Enhanced Chiral Sensing with Dielectric Nanoresonators

被引:161
作者
Garcia-Guirado, Jose [1 ]
Svedendahl, Mikael [2 ]
Puigdollers, Joaquim [3 ]
Quidant, Romain [1 ,4 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Fothn, Barcelona 08860, Spain
[2] KTH Royal Inst Technol, Roslagstullsbacken 21, S-10691 Stockholm, Sweden
[3] UPC, Dept Ingn Elect, Barcelona 08034, Spain
[4] ICREA, Barcelona 08010, Spain
基金
瑞典研究理事会; 欧洲研究理事会;
关键词
Chirality; biosensing; dielectric nanoresonators; circular dichroism; nano-optics; CIRCULAR-DICHROISM; AMPLIFICATION; BIOMOLECULES; FIELDS;
D O I
10.1021/acs.nanolett.9b04334
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chiro-sensitive molecular detection is highly relevant as many biochemical compounds, the building blocks of life, are chiral. Optical chirality is conventionally detected through circular dichroism (CD) in the UV range, where molecules naturally absorb. Recently, plasmonics has been proposed as a way to boost the otherwise very weak CD signal and translate it to the visible/NIR range, where technology is friendlier. Here, we explore how dielectric nanoresonators can contribute to efficiently differentiate molecular enantiomers. We study the influence of the detuning between electric (ED) and magnetic dipole (MD) resonances in silicon nanocylinders on the quality of the CD signal. While our experimental data, supported by numerical simulations, demonstrate that dielectric nanoresonators can perform even better than their plasmonic counterpart, exhibiting larger CD enhancements, we do not observe any significant influence of the optical chirality.
引用
收藏
页码:585 / 591
页数:7
相关论文
共 50 条
[1]  
Barron L. D., 2004, Molecular Light Scattering and Optical Activity, V2nd
[2]  
Bentley R., 2006, REV CELL BIOL MOL ME
[3]  
Berova, 2000, CIRCULAR DICHROISM P
[4]   Plasmonic versus All-Dielectric Nanoantennas for Refractometric Sensing: A Direct Comparison [J].
Bosio, Noemi ;
Sipova-Jungova, Hana ;
Lank, Nils Odebo ;
Antosiewicz, Tomasz J. ;
Verre, Ruggero ;
Kall, Mikael .
ACS PHOTONICS, 2019, 6 (06) :1556-1564
[5]   Enantiomer-Selective Molecular Sensing Using Racemic Nanoplasmonic Arrays [J].
Garcia-Guirado, Jose ;
Svedendahl, Mikael ;
Puigdollers, Joaquim ;
Quidantt, Romain .
NANO LETTERS, 2018, 18 (10) :6279-6285
[6]  
Ghosh A, 2006, PHYS REV LETT, V97, P1
[7]   Roles of Superchirality and Interference in Chiral Plasmonic Biodetection [J].
Gilroy, Cameron ;
Hashiyada, Shun ;
Endo, Kensaku ;
Karimullah, Affar S. ;
Barron, Laurence D. ;
Okamoto, Hiromi ;
Togawa, Yoshihiko ;
Kadodwala, Malcolm .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (24) :15195-15203
[8]   Theory of Chiral Plasmonic Nanostructures Comprising Metal Nanocrystals and Chiral Molecular Media [J].
Govorov, Alexander O. ;
Fan, Zhiyuan .
CHEMPHYSCHEM, 2012, 13 (10) :2551-2560
[9]   Plasmon-Induced Circular Dichroism of a Chiral Molecule in the Vicinity of Metal Nanocrystals. Application to Various Geometries [J].
Govorov, Alexander O. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (16) :7914-7923
[10]   Achiral, Helicity Preserving, and Resonant Structures for Enhanced Sensing of Chiral Molecules [J].
Graf, Florian ;
Feis, Joshua ;
Garcia-Santiago, Xavier ;
Wegener, Martin ;
Rockstuhl, Carsten ;
Fernandez-Corbaton, Ivan .
ACS PHOTONICS, 2019, 6 (02) :482-491