Estimation of broadband surface emissivity from narrowband emissivities

被引:38
作者
Tang, Bo-Hui [1 ]
Wu, Hua [1 ]
Li, Chuanrong [2 ]
Li, Zhao-Liang [1 ,3 ]
机构
[1] Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Acad Optoelect, Beijing 100101, Peoples R China
[3] CNRS, UdS, LSIIT, F-67412 Illkirch Graffenstaden, France
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
Broadband emissivity - Calculated values - Moderate resolution imaging spectroradiometer - Root mean square errors - Spectral libraries - Surface emissivity - Thermal infrared channels - University of California;
D O I
10.1364/OE.19.000185
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This work analyzed and addressed the estimate of the broadband emissivities for the spectral domains 3-14 mu m (epsilon(3-14)) and 3-infinity mu m (epsilon(3-infinity)). Two linear narrow-to-broadband conversion models were proposed to estimate broadband emissivities epsilon(3-14) and epsilon(3-infinity) using the Moderate Resolution Imaging Spectroradiometer (MODIS) derived emissivities in three thermal infrared channels 29 (8.4-8.7 mu m), 31 (10.78-11.28 mu m) and 32 (11.77-12.27 mu m). Two independent spectral libraries, the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) spectral library and the MODIS UCSB (University of California, Santa Barbara) emissivity library, were used to calibrate and validate the proposed models. Comparisons of the estimated broadband emissivities using the proposed models and the calculated values from the spectral libraries, showed that the proposed method of estimation of broadband emissivity has potential accuracy and the Root Mean Square Error (RMSE) between estimated and calculated broadband emissivities is less than 0.01 for both epsilon(3-14) and epsilon(3-infinity). (C) 2010 Optical Society of America
引用
收藏
页码:185 / 192
页数:8
相关论文
共 8 条
[1]   The ASTER spectral library version 2.0 [J].
Baldridge, A. M. ;
Hook, S. J. ;
Grove, C. I. ;
Rivera, G. .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (04) :711-715
[2]  
Blondin C., 1991, Land Surface Evaporation: Measurements and Parameterization, P31, DOI DOI 10.1007/978-1-4612-3032-83
[3]   An improved land surface emissivity parameter for land surface models using global remote sensing observations [J].
Jin, Menglin ;
Liang, Shunlin .
JOURNAL OF CLIMATE, 2006, 19 (12) :2867-2881
[4]   Estimation of land surface window (8-12 μm) emissivity from multispectral thermal infrared remote sensing -: A case study in a part of Sahara Desert -: art. no. 1067 [J].
Ogawa, K ;
Schmugge, T ;
Jacob, F ;
French, A .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (02) :39-1
[5]   Thermal infrared (3-14 mu m) bidirectional reflectance measurements of sands and soils [J].
Snyder, WC ;
Wan, ZM ;
Zhang, YL ;
Feng, YZ .
REMOTE SENSING OF ENVIRONMENT, 1997, 60 (01) :101-109
[6]   A generalized split-window algorithm for retrieving land-surface temperature from space [J].
Wan, ZM ;
Dozier, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1996, 34 (04) :892-905
[7]   Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products [J].
Wang, KC ;
Wan, ZM ;
Wang, PC ;
Sparrow, M ;
Liu, JM ;
Zhou, XJ ;
Haginoya, S .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D11) :1-12
[8]  
Wilber A. C., 1999, NASA TP, V30