Generative Adversarial Networks for Synthetic CT Generation from MR Scans with Truncated Anatomy

被引:0
|
作者
Zhao, Y. [1 ,2 ]
Court, L. [1 ,2 ]
Yu, C. [1 ,2 ]
Cardenas, C. [1 ,2 ]
Wang, H. [1 ,2 ]
Wang, X. [2 ]
Phan, J. [2 ]
Yang, J. [1 ,2 ]
机构
[1] Univ Texas MD Anderson UTHlth Grad Sch Biomed Sci, Houston, TX USA
[2] Univ Texas MD Anderson Canc Ctr, Houston, TX 77030 USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
MO-IePD-TR
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Compensation cycle consistent generative adversarial networks (Comp-GAN) for synthetic CT generation from MR scans with truncated anatomy
    Zhao, Yao
    Wang, He
    Yu, Cenji
    Court, Laurence E.
    Wang, Xin
    Wang, Qianxia
    Pan, Tinsu
    Ding, Yao
    Phan, Jack
    Yang, Jinzhong
    MEDICAL PHYSICS, 2023, 50 (07) : 4399 - 4414
  • [2] SC-GAN: Structure-completion generative adversarial network for synthetic CT generation from MR images with truncated anatomy
    Chen, Xinru
    Zhao, Yao
    Court, Laurence E.
    Wang, He
    Pan, Tinsu
    Phan, Jack
    Wang, Xin
    Ding, Yao
    Yang, Jinzhong
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2024, 113
  • [3] Deep learning-based synthetic CT generation from MR images: comparison of generative adversarial and residual neural networks
    Gholamiankhah, F.
    Mostafapour, S.
    Arabia, H.
    INTERNATIONAL JOURNAL OF RADIATION RESEARCH, 2022, 20 (01): : 121 - 130
  • [4] A Transfer Deep Generative Adversarial Network Model to Synthetic Brain CT Generation from MR Images
    Gu, Yi
    Zheng, Qiankun
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [5] MR-based synthetic CT generation using a conditional generative adversarial network
    Wang, Zhenyu
    Lian, Jie
    Chen, Tao
    Zheng, Wei
    Yue, Shaolong
    Ji, Senrong
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 125 : 17 - 18
  • [6] Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation
    Emami, Hajar
    Dong, Ming
    Glide-Hurst, Carri K.
    2020 IEEE 21ST INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2020), 2020, : 188 - 193
  • [7] Generation of Synthetic Data with Conditional Generative Adversarial Networks
    Vega-Marquez, Belen
    Rubio-Escudero, Cristina
    Nepomuceno-Chamorro, Isabel
    LOGIC JOURNAL OF THE IGPL, 2022, 30 (02) : 252 - 262
  • [8] Synthetic Traffic Generation with Wasserstein Generative Adversarial Networks
    Wu, Chao-Lun
    Chen, Yu-Ying
    Chou, Po-Yu
    Wang, Chih-Yu
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 1503 - 1508
  • [9] CBCT-based synthetic CT generation using generative adversarial networks with disentangled representation
    Liu, Jiwei
    Yan, Hui
    Cheng, Hanlin
    Liu, Jianfei
    Sun, Pengjian
    Wang, Boyi
    Mao, Ronghu
    Du, Chi
    Luo, Shengquan
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (12) : 4820 - +
  • [10] Synthetic Fingerprint Generation Using Generative Adversarial Networks: A Review
    Dhaneshwar, Ritika
    Taya, Arnav
    Kaur, Mandeep
    FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 1, CIS 2023, 2024, 868 : 375 - 387