Multiple recurrence and convergence for sequences related to the prime numbers

被引:41
作者
Frantzikinakis, Nikos [1 ]
Host, Bernard
Kra, Bryna
机构
[1] Univ Memphis, Dept Math, Memphis, TN 38152 USA
[2] Univ Marne la Vallee, Equipe Anal Math Appl, F-77454 Marne La Vallee, France
[3] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2007年 / 611卷
基金
美国国家科学基金会;
关键词
ERGODIC AVERAGES; ARITHMETIC PROGRESSIONS; DIAGONAL MEASURES; DIFFERENCE SETS; THEOREM; SZEMEREDI; INTEGERS; WAERDENS; VAN;
D O I
10.1515/CRELLE.2007.076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any measure preserving system (X, X, mu, T) and A is an element of X with mu(A)>0, we show that there exist infinitely many primes p such that mu(A boolean AND T(-(P-1))A boolean AND T(-2(P-1))A) > 0 (the same holds with p - 1 replaced by p + 1). Furthermore, we show the existence of the limit in L-2 (mu) of the associated ergodic average over the primes. A key ingredient is a recent result of Green and Tao on the von Mangoldt function. A combinatorial consequence is that every subset of the integers with positive upper density contains an arithmetic progression of length three and common difference of the form p - 1 (or p + 1) for some prime p.
引用
收藏
页码:131 / 144
页数:14
相关论文
共 22 条
[1]   Polynomial extensions of van der Waerden's and Szemeredi's theorems [J].
Bergelson, V ;
Leibman, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (03) :725-753
[2]  
Bergelson V., 2000, C MATH, V8485, P549, DOI DOI 10.4064/CM-84/85-2-549-576
[3]  
BOURGAIN J, 1988, LECT NOTES MATH, V1317, P204
[4]   On the set of common differences in van der Waerden's theorem on arithmetic progressions [J].
Brown, TC ;
Graham, RL ;
Landman, BM .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1999, 42 (01) :25-36
[5]  
CONZE JP, 1988, CR ACAD SCI I-MATH, V306, P491
[6]   The structure of strongly stationary systems [J].
Frantzikinakis, N .
JOURNAL D ANALYSE MATHEMATIQUE, 2004, 93 (1) :359-388
[7]   Sets of k-recurrence but not (k+1)-recurrence [J].
Frantzikinakis, Nikos ;
Lesigne, Emmanuel ;
Wierdl, Mate .
ANNALES DE L INSTITUT FOURIER, 2006, 56 (04) :839-849
[8]   AN ERGODIC SZEMEREDI THEOREM FOR COMMUTING TRANSFORMATIONS [J].
FURSTENBERG, H ;
KATZNELSON, Y .
JOURNAL D ANALYSE MATHEMATIQUE, 1978, 34 :275-291
[9]   ERGODIC BEHAVIOR OF DIAGONAL MEASURES AND A THEOREM OF SZEMEREDI ON ARITHMETIC PROGRESSIONS [J].
FURSTENBERG, H .
JOURNAL D ANALYSE MATHEMATIQUE, 1977, 31 :204-256
[10]  
Furstenberg H., 1981, Recurrence in ergodic theory and combinatorial number theory