Characterization of Sensor-Specific Stress Response by Transcriptional Profiling of wsc1 and mid2 Deletion Strains and Chimeric Sensors in Saccharomyces cerevisiae

被引:32
作者
Bermejo, Clara
Garcia, Raul
Straede, Andrea [2 ]
Rodriguez-Pena, Jose M.
Nombela, Cesar
Heinisch, Juergen J. [2 ]
Arroyo, Javier [1 ]
机构
[1] Univ Complutense Madrid, Fac Farm, Dept Microbiol 2, IRYCIS, E-28040 Madrid, Spain
[2] AG Genet, Fachbereich Biol Chem, Osnabruck, Germany
关键词
CELL-WALL INTEGRITY; GENOME-WIDE ANALYSIS; MAP KINASE PATHWAY; SIGNALING PATHWAY; SURFACE SENSOR; YEAST; PROTEIN; ACTIVATION; CASPOFUNGIN; EXPRESSION;
D O I
10.1089/omi.2010.0060
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cell wall stress in the model yeast Saccharomyces cerevisiae is known to trigger an adaptive transcriptional response. This response is mediated by a specific MAPK cell wall integrity (CWI) signal transduction pathway and affects the expression of many genes whose products are involved in the remodeling of the cellular envelope. Cell wall damage is detected mainly by Wsc1 and Mid2, which are the dominant sensors of CWI pathway. Here, we first determined the transcriptional response to different cell stresses (Congo red, Caspofungin, and Zymolyase) in mid2 Delta and wsc1 Delta mutant strains using DNA microarrays. Mid2 turned out to be the main sensor involved in the detection of damage provoked by Congo Red, whereas the transcriptional response to Caspofungin is mediated almost exclusively by Wsc1. For stress caused by the degradation of cell wall glucans by Zymolyase, mid2 Delta and wsc1 Delta deletions show little effect, but the transcriptional response rather depends on the transmembrane protein Sho1, a component of the high-osmolarity glycerol (HOG) pathway. Using sensor chimeras of Wsc1 and Mid2 we studied the contribution of the cytoplasmic and extracellular regions of Mid2 and Wsc1 for sensing Caspofungin-cell wall stress. Genome-wide transcriptional characterization in addition to Slt2 MAPK phosphorylation and phenotypic analyses indicates an important role of the extracellular domain of Wsc1 in mediating signal specificity of this sensor to detect cell wall damage.
引用
收藏
页码:679 / 688
页数:10
相关论文
共 38 条
  • [1] Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents in Saccharomyces cerevisiae
    Agarwal, AK
    Rogers, PD
    Baerson, SR
    Jacob, MR
    Barker, KS
    Cleary, JD
    Walker, LA
    Nagle, DG
    Clark, AM
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (37) : 34998 - 35015
  • [2] The sequential activation of the yeast HOG and SLT2 pathways is required for cell survival to cell wall stress
    Bermejo, Clara
    Rodriguez, Estefania
    Garcia, Raul
    Rodriguez-Pena, Jose M.
    Rodriguez de la Concepcion, Maria L.
    Rivas, Carmen
    Arias, Patricia
    Nombela, Cesar
    Posas, Francesc
    Arroyo, Javier
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2008, 19 (03) : 1113 - 1124
  • [3] Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae
    Boorsma, A
    de Nobel, H
    ter Riet, B
    Bargmann, B
    Brul, S
    Hellingwerf, KJ
    Klis, FM
    [J]. YEAST, 2004, 21 (05) : 413 - 427
  • [4] The Rgd1p Rho GTPase-activating sensor are required at low pH protein and the Mid2p cell wall for protein kinase C pathway activation and cell survival in Saccharomyces cerevisiae
    Claret, S
    Gatti, X
    Doignon, F
    Thoraval, D
    Crouzet, M
    [J]. EUKARYOTIC CELL, 2005, 4 (08) : 1375 - 1386
  • [5] Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2-lacZ expression, glucanase resistance and thermotolerance
    de Nobel, H
    Ruiz, C
    Martin, H
    Morris, W
    Brul, S
    Molina, M
    Klis, FM
    [J]. MICROBIOLOGY-SGM, 2000, 146 : 2121 - 2132
  • [6] The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo
    Dupres, Vincent
    Alsteens, David
    Wilk, Sabrina
    Hansen, Benjamin
    Heinisch, Juergen J.
    Dufrene, Yves F.
    [J]. NATURE CHEMICAL BIOLOGY, 2009, 5 (11) : 857 - 862
  • [7] DYNAMICS AND ORGANIZATION OF MAP KINASE SIGNAL PATHWAYS
    ERREDE, B
    CADE, RM
    YASHAR, BM
    KAMADA, Y
    LEVIN, DE
    IRIE, K
    MATSUMOTO, K
    [J]. MOLECULAR REPRODUCTION AND DEVELOPMENT, 1995, 42 (04) : 477 - 485
  • [8] The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway
    García, R
    Bermejo, C
    Grau, C
    Pérez, R
    Rodríguez-Peña, JM
    Francois, J
    Nombela, C
    Arroyo, J
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (15) : 15183 - 15195
  • [9] The High Osmotic Response and Cell Wall Integrity Pathways Cooperate to Regulate Transcriptional Responses to Zymolyase-induced Cell Wall Stress in Saccharomyces cerevisiae
    Garcia, Raul
    Rodriguez-Pena, Jose M.
    Bermejo, Clara
    Nombela, Cesar
    Arroyo, Javier
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (16) : 10901 - 10911
  • [10] A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator
    Gray, JV
    Ogas, JP
    Kamada, Y
    Stone, M
    Levin, DE
    Herskowitz, I
    [J]. EMBO JOURNAL, 1997, 16 (16) : 4924 - 4937