Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks

被引:22
|
作者
Brito Lopes, Fernando [1 ,2 ]
Magnabosco, Claudio U. [1 ]
Passafaro, Tiago L. [3 ]
Brunes, Ludmilla C. [4 ]
Costa, Marcos F. O. [5 ]
Eifert, Eduardo C. [1 ]
Narciso, Marcelo G. [5 ]
Rosa, Guilherme J. M. [3 ,6 ]
Lobo, Raysildo B. [7 ]
Baldi, Fernando [1 ]
机构
[1] Sao Paulo State Univ UNESP, Dept Anim Sci, BR-14884900 Jaboticabal, SP, Brazil
[2] Embrapa Cerrados, Brasilia, DF, Brazil
[3] Univ Wisconsin, Dept Anim Sci, Madison, WI USA
[4] Fed Univ Goias UFG, Dept Anim Sci, Goiania, Go, Brazil
[5] Embrapa Rice & Beans, Santo Antonio De Goias, Brazil
[6] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI USA
[7] Natl Assoc Breeders & Researchers ANCP, Ribeirao Preto, Brazil
关键词
animal breeding; Bayesian regression models; deep learning; genomic selection; Zebu; ENABLED PREDICTION; MOLECULAR MARKERS; QUALITY TRAITS; CARCASS; REGRESSION; GROWTH; MODELS; VALUES; BREEDS; PLANT;
D O I
10.1111/jbg.12468
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
The goal of this study was to compare the predictive performance of artificial neural networks (ANNs) with Bayesian ridge regression, Bayesian Lasso, Bayes A, Bayes B and Bayes C pi in estimating genomic breeding values for meat tenderness in Nellore cattle. The animals were genotyped with the Illumina Bovine HD Bead Chip (HD, 777K from 90 samples) and the GeneSeek Genomic Profiler (GGP Indicus HD, 77K from 485 samples). The quality control for the genotypes was applied on each Chip and comprised removal of SNPs located on non-autosomal chromosomes, with minor allele frequency <5%, deviation from HWE (p < 10(-6)), and with linkage disequilibrium >0.8. The FImpute program was used for genotype imputation. Pedigree-based analyses indicated that meat tenderness is moderately heritable (0.35), indicating that it can be improved by direct selection. Prediction accuracies were very similar across the Bayesian regression models, ranging from 0.20 (Bayes A) to 0.22 (Bayes B) and 0.14 (Bayes C pi) to 0.19 (Bayes A) for the additive and dominance effects, respectively. ANN achieved the highest accuracy (0.33) of genomic prediction of genetic merit. Even though deep neural networks are recognized to deliver more accurate predictions, in our study ANN with one single hidden layer, 105 neurons and rectified linear unit (ReLU) activation function was sufficient to increase the prediction of genetic merit for meat tenderness. These results indicate that an ANN with relatively simple architecture can provide superior genomic predictions for meat tenderness in Nellore cattle.
引用
收藏
页码:438 / 448
页数:11
相关论文
共 50 条
  • [1] Accuracy of genomic breeding values for meat tenderness in Polled Nellore cattle
    Magnabosco, C. U.
    Lopes, F. B.
    Fragoso, R. R.
    Eifert, E. C.
    Valente, B. D.
    Rosa, G. J. M.
    Sainz, R. D.
    JOURNAL OF ANIMAL SCIENCE, 2016, 94 (07) : 2752 - 2760
  • [2] Improving the accuracy of genomic prediction in dairy cattle using the biologically annotated neural networks framework
    Wang, Xue
    Shi, Shaolei
    Khan, Md. Yousuf Ali
    Zhang, Zhe
    Zhang, Yi
    JOURNAL OF ANIMAL SCIENCE AND BIOTECHNOLOGY, 2024, 15 (01)
  • [3] Improving the accuracy of genomic prediction in dairy cattle using the biologically annotated neural networks framework
    Xue Wang
    Shaolei Shi
    MdYousuf Ali Khan
    Zhe Zhang
    Yi Zhang
    Journal of Animal Science and Biotechnology, 2024, 15 (06) : 2216 - 2228
  • [4] Genomic prediction for meat and carcass traits in Nellore cattle using a Markov blanket algorithm
    Lopes, Fernando Brito
    Baldi, Fernando
    Brunes, Ludmilla Costa
    Oliveira e Costa, Marcos Fernando
    Eifert, Eduardo da Costa
    Magalhaes Rosa, Guilherme Jordao
    Lobo, Raysildo Barbosa
    Magnabosco, Claudio Ulhoa
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2023, 140 (01) : 1 - 12
  • [5] Lamb meat tenderness prediction using neural networks and sensitivity analysis
    Cortez, P
    Portelinha, M
    Rodrigues, S
    Cadavez, V
    Teixeira, A
    MODELLING AND SIMULATION 2005, 2005, : 177 - 181
  • [6] Quantitative genetic analysis for meat tenderness trait in Polled Nellore cattle
    de Castro, Leticia Mendes
    Magnabosco, Claudio Ulhoa
    Sainz, Roberto Daniel
    de Faria, Carina Ubirajara
    Lopes, Fernando Brito
    REVISTA CIENCIA AGRONOMICA, 2014, 45 (02): : 393 - 402
  • [7] Genomewide association mapping and pathway analysis of meat tenderness in Polled Nellore cattle
    Castro, L. M.
    Rosa, G. J. M.
    Lopes, F. B.
    Regitano, L. C. A.
    Rosa, A. J. M.
    Magnabosco, C. U.
    JOURNAL OF ANIMAL SCIENCE, 2017, 95 (05) : 1945 - 1956
  • [8] Accuracy of genomic predictions in Bos indicus (Nellore) cattle
    Neves, Haroldo H. R.
    Carvalheiro, Roberto
    Perez O'Brien, Ana M.
    Utsunomiya, Yuri T.
    do Carmo, Adriana S.
    Schenkel, Flavio S.
    Soelkner, Johann
    McEwan, John C.
    Van Tassell, Curtis P.
    Cole, John B.
    da Silva, Marcos V. G. B.
    Queiroz, Sandra A.
    Sonstegard, Tad S.
    Garcia, Jose Fernando
    GENETICS SELECTION EVOLUTION, 2014, 46
  • [9] Accuracy of genomic predictions in Bos indicus (Nellore) cattle
    Haroldo HR Neves
    Roberto Carvalheiro
    Ana M Pérez O’Brien
    Yuri T Utsunomiya
    Adriana S do Carmo
    Flávio S Schenkel
    Johann Sölkner
    John C McEwan
    Curtis P Van Tassell
    John B Cole
    Marcos VGB da Silva
    Sandra A Queiroz
    Tad S Sonstegard
    José Fernando Garcia
    Genetics Selection Evolution, 46
  • [10] Improving the accuracy of PHEMT models using corrective artificial neural networks
    Dobes, J.
    Pospisil, L.
    PIERS 2007 PRAGUE: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS, 2007, : 512 - +