Hierarchical three-dimensional branched hematite nanorod arrays with enhanced mid-visible light absorption for high-efficiency photoelectrochemical water splitting

被引:40
作者
Wang, Degao [1 ,2 ]
Chang, Guoliang [1 ,2 ]
Zhang, Yuying [1 ,2 ]
Chao, Jie [3 ]
Yang, Jianzhong [1 ,2 ]
Su, Shao [3 ]
Wang, Lihua [1 ,2 ]
Fan, Chunhai [1 ,2 ,3 ]
Wang, Lianhui [3 ]
机构
[1] Chinese Acad Sci, Div Phys Biol, Shanghai 201800, Peoples R China
[2] Chinese Acad Sci, Key Lab Interfacial Phys & Technol, Shanghai Synthchrotron Radiat Facil, Bioimaging Ctr,Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Natl Syngerst Innovat Ctr Adv Mat SICAM, Key Lab Organ Elect & Informat Displays KLOELD, Inst Adv Mat IAM, 9 Wenyuan Rd, Nanjing 210023, Jiangsu, Peoples R China
关键词
NANOWIRE ARRAYS; OXIDATION; NANOSTRUCTURES; PHOTOANODES; PERFORMANCE; ELECTRODES; GROWTH;
D O I
10.1039/c6nr03855g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Herein, we presented hierarchical three-dimensional (3D) branched hematite nanorod arrays (NAs) on transparent fluorine-doped tin oxide (FTO) conductive glass substrates, which exhibited high PEC water splitting performance due to the enhancement of midvisible light harvesting as well as charge separation and transfer. The introduction of a TiO2 underlayer made the as-prepared 3D branched hematite NAs achieve a photocurrent density of 0.61 mA cm(-2) at 1.23 V vs. reversible hydrogen electrode (RHE) without high-temperature activation.
引用
收藏
页码:12697 / 12701
页数:5
相关论文
共 38 条
  • [1] Decoupling Feature Size and Functionality in Solution-Processed, Porous Hematite Electrodes for Solar Water Splitting
    Brillet, Jeremie
    Gratzel, Michael
    Sivula, Kevin
    [J]. NANO LETTERS, 2010, 10 (10) : 4155 - 4160
  • [2] Branched nanowires: Synthesis and energy applications
    Cheng, Chuanwei
    Fan, Hong Jin
    [J]. NANO TODAY, 2012, 7 (04) : 327 - 343
  • [3] Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production
    Cho, In Sun
    Chen, Zhebo
    Forman, Arnold J.
    Kim, Dong Rip
    Rao, Pratap M.
    Jaramillo, Thomas F.
    Zheng, Xiaolin
    [J]. NANO LETTERS, 2011, 11 (11) : 4978 - 4984
  • [4] Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger
    Dotan, Hen
    Sivula, Kevin
    Graetzel, Michael
    Rothschild, Avner
    Warren, Scott C.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) : 958 - 964
  • [5] Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation
    Franking, Ryan
    Li, Linsen
    Lukowski, Mark A.
    Meng, Fei
    Tan, Yizheng
    Hamers, Robert J.
    Jin, Song
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (02) : 500 - 512
  • [6] ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE
    FUJISHIMA, A
    HONDA, K
    [J]. NATURE, 1972, 238 (5358) : 37 - +
  • [7] Magnetite Colloidal Nanocrystals: A Facile Pathway To Prepare Mesoporous Hematite Thin Films for Photoelectrochemical Water Splitting
    Goncalves, Ricardo H.
    Lima, Bruno H. R.
    Leite, Edson R.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (15) : 6012 - 6019
  • [8] Photoelectrochemical cells
    Grätzel, M
    [J]. NATURE, 2001, 414 (6861) : 338 - 344
  • [9] Enhancement in the Performance of Ultrathin Hematite Photoanode for Water Splitting by an Oxide Underlayer
    Hisatomi, Takashi
    Dotan, Hen
    Stefik, Morgan
    Sivula, Kevin
    Rothschild, Avner
    Graetzel, Michael
    Mathews, Nripan
    [J]. ADVANCED MATERIALS, 2012, 24 (20) : 2699 - 2702
  • [10] A Three-Dimensional Branched Cobalt-Doped α-Fe2O3 Nanorod/MgFe2O4 Heterojunction Array as a Flexible Photoanode for Efficient Photoelectrochemical Water Oxidation
    Hou, Yang
    Zuo, Fan
    Dagg, Alex
    Feng, Pingyun
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (04) : 1248 - 1252