Coherent spin control of a nanocavity-enhanced qubit in diamond

被引:154
作者
Li, Luozhou [1 ]
Schroeder, Tim [1 ]
Chen, Edward H. [1 ]
Walsh, Michael [1 ]
Bayn, Igal [1 ]
Goldstein, Jordan [1 ]
Gaathon, Ophir [1 ]
Trusheim, Matthew E. [1 ]
Lu, Ming [2 ]
Mower, Jacob [1 ]
Cotlet, Mircea [2 ]
Markham, Matthew L. [3 ]
Twitchen, Daniel J. [3 ]
Englund, Dirk [1 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[3] Element Six, Santa Clara, CA 95054 USA
关键词
PHOTONIC CRYSTAL CAVITY; NITROGEN-VACANCY CENTERS; COLOR-CENTER; ENTANGLEMENT; ATOM;
D O I
10.1038/ncomms7173
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A central aim of quantum information processing is the efficient entanglement of multiple stationary quantum memories via photons. Among solid-state systems, the nitrogen-vacancy centre in diamond has emerged as an excellent optically addressable memory with second-scale electron spin coherence times. Recently, quantum entanglement and teleportation have been shown between two nitrogen-vacancy memories, but scaling to larger networks requires more efficient spin-photon interfaces such as optical resonators. Here we report such nitrogen-vacancy-nanocavity systems in the strong Purcell regime with optical quality factors approaching 10,000 and electron spin coherence times exceeding 200 mu s using a silicon hard-mask fabrication process. This spin-photon interface is integrated with on-chip microwave striplines for coherent spin control, providing an efficient quantum memory for quantum networks.
引用
收藏
页数:7
相关论文
共 44 条
[1]   Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors [J].
Awschalom, David D. ;
Bassett, Lee C. ;
Dzurak, Andrew S. ;
Hu, Evelyn L. ;
Petta, Jason R. .
SCIENCE, 2013, 339 (6124) :1174-1179
[2]   Solid-state electronic spin coherence time approaching one second [J].
Bar-Gill, N. ;
Pham, L. M. ;
Jarmola, A. ;
Budker, D. ;
Walsworth, R. L. .
NATURE COMMUNICATIONS, 2013, 4
[3]   Low Temperature Studies of the Excited-State Structure of Negatively Charged Nitrogen-Vacancy Color Centers in Diamond [J].
Batalov, A. ;
Jacques, V. ;
Kaiser, F. ;
Siyushev, P. ;
Neumann, P. ;
Rogers, L. J. ;
McMurtrie, R. L. ;
Manson, N. B. ;
Jelezko, F. ;
Wrachtrup, J. .
PHYSICAL REVIEW LETTERS, 2009, 102 (19)
[4]   Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks [J].
Bayn, I. ;
Mouradian, S. ;
Li, L. ;
Goldstein, J. A. ;
Schroeder, T. ;
Zheng, J. ;
Chen, E. H. ;
Gaathon, O. ;
Lu, M. ;
Stein, A. ;
Ruggiero, C. A. ;
Salzman, J. ;
Kalish, R. ;
Englund, Dirk .
APPLIED PHYSICS LETTERS, 2014, 105 (21)
[5]   Assembly of hybrid photonic architectures from nanophotonic constituents [J].
Benson, Oliver .
NATURE, 2011, 480 (7376) :193-199
[6]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90
[7]  
Burkard G., 2014, PREPRINT
[8]  
Carter SG, 2013, NAT PHOTONICS, V7, P329, DOI [10.1038/nphoton.2013.41, 10.1038/NPHOTON.2013.41]
[9]   Fault-tolerant quantum communication based on solid-state photon emitters [J].
Childress, L ;
Taylor, JM ;
Sorensen, AS ;
Lukin, MD .
PHYSICAL REVIEW LETTERS, 2006, 96 (07) :1-4
[10]   Coherent Optical Transitions in Implanted Nitrogen Vacancy Centers [J].
Chu, Y. ;
de Leon, N. P. ;
Shields, B. J. ;
Hausmann, B. ;
Evans, R. ;
Togan, E. ;
Burek, M. J. ;
Markham, M. ;
Stacey, A. ;
Zibrov, A. S. ;
Yacoby, A. ;
Twitchen, D. J. ;
Loncar, M. ;
Park, H. ;
Maletinsky, P. ;
Lukin, M. D. .
NANO LETTERS, 2014, 14 (04) :1982-1986