Effect of Organic Solvents on the Pore Structure of Catalyst Layers in Polymer Electrolyte Membrane Fuel Cells

被引:24
|
作者
Chisaka, Mitsuharu [1 ]
Matsuoka, Eitaro [2 ]
Daiguji, Hirofumi [2 ]
机构
[1] Toyohashi Univ Technol, Dept Elect & Elect Informat Engn, Aichi 4418580, Japan
[2] Univ Tokyo, Grad Sch Frontier Sci, Inst Environm Studies, Chiba 2778563, Japan
基金
日本学术振兴会;
关键词
VAPOR-LIQUID-EQUILIBRIA; AIR-BREATHING DMFC; CATHODE STRUCTURE; OXYGEN REDUCTION; PERFORMANCE; FABRICATION; PEMFC; INK;
D O I
10.1149/1.3439617
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The effect of organic solvents in catalyst inks on the pore structure of catalyst layers (CLs) in polymer electrolyte membrane fuel cells was investigated. The pore size distribution of CLs fabricated from catalyst inks containing either ethylene glycol (EG) (CL(EG)), propylene glycol (PG) (CL(PG)), or 1,3-propanediol (PDO) (CL(PDO)) was measured. The dielectric constants of these three organic solvents were >10, and perfluorosulfonate ionomer was dissolved in the catalyst inks. The pore volume (v) of CL(PDO), CL(EG), and CLPG increased in this order: v(PDO) < v(EG) < v(PG), suggesting that the pore structure of the CLs depended on the solvent evaporation process. (C) 2010 The Electrochemical Society. [DOI:10.1149/1.3439617] All rights reserved.
引用
收藏
页码:B1218 / B1221
页数:4
相关论文
共 50 条
  • [41] Polymer Electrolyte Membrane Fuel Cells
    Antonio Asensio, Juan
    Pena, Juan
    Perez-Coll, Domingo
    Carlos Ruiz-Morales, Juan
    Marrero-Lopez, David
    Nunez, Pedro
    Ballesteros, Belen
    Canales-Vazquez, Jesus
    Borros, Salvador
    Gomez-Romero, Pedro
    AFINIDAD, 2011, 68 (554) : 246 - 258
  • [42] Optimisation and characterisation of graphene- based microporous layers for polymer electrolyte membrane fuel cells
    Lee, F. C.
    Ismail, M. S.
    Zhang, K.
    Ingham, D. B.
    Aldakheel, F.
    Hughes, K. J.
    Ma, L.
    El-Kharouf, A.
    Pourkashanian, M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 1311 - 1325
  • [43] Microporous Layers with Different Decorative Patterns for Polymer Electrolyte Membrane Fuel Cells
    Chen, Liang
    Lin, Rui
    Chen, Xiadong
    Hao, Zhixian
    Diao, Xiaoyu
    Froning, Dieter
    Tang, Shenghao
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (21) : 24048 - 24058
  • [44] In-Plane Channel-Structured Catalyst Layer for Polymer Electrolyte Membrane Fuel Cells
    Lee, Dong-Hyun
    Jo, Wonhee
    Yuk, Seongmin
    Choi, Jaeho
    Choi, Sungyu
    Doo, Gisu
    Lee, Dong Wook
    Kim, Hee-Tak
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (05) : 4682 - 4688
  • [45] Effect of ammonia on the performance of polymer electrolyte membrane fuel cells
    Halseid, R
    Vie, PJS
    Tunold, R
    JOURNAL OF POWER SOURCES, 2006, 154 (02) : 343 - 350
  • [46] Effect of fuel utilization on the carbon monoxide poisoning dynamics of Polymer Electrolyte Membrane Fuel Cells
    Perez, Luis C.
    Koski, Pauli
    Ihonen, Jari
    Sousa, Jose M.
    Mendes, Adelio
    JOURNAL OF POWER SOURCES, 2014, 258 : 122 - 128
  • [47] Effect of air contaminants on electrolyte degradation in polymer electrolyte membrane fuel cells
    Imamura, D.
    Yamaguchi, E.
    PROTON EXCHANGE MEMBRANE FUEL CELLS 9, 2009, 25 (01): : 813 - 819
  • [48] Effect of humidity and thermal cycling on the catalyst layer structural changes in polymer electrolyte membrane fuel cells
    Chang, Yafei
    Liu, Jing
    Li, Ruitao
    Zhao, Jian
    Qin, Yanzhou
    Zhang, Junfeng
    Yin, Yan
    Li, Xianguo
    ENERGY CONVERSION AND MANAGEMENT, 2019, 189 : 24 - 32
  • [49] Hierarchical Model of Reaction Rate Distributions and Effectiveness Factors in Catalyst Layers of Polymer Electrolyte Fuel Cells
    Sadeghi, Ehsan
    Putz, Andreas
    Eikerling, Michael
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (10) : F1159 - F1169
  • [50] Experimental analyses of low humidity operation properties of SiO2-containing catalyst layers for polymer electrolyte fuel cells
    Inoue, Naoki
    Uchida, Makoto
    Watanabe, Masahiro
    Uchida, Hiroyuki
    ELECTROCHIMICA ACTA, 2013, 88 : 807 - 813