Correlation Modeling of Intelligent Manufacturing Industry Upgrading and International Trade based on Deep Neural Network

被引:0
作者
Xiao, Pengwen [1 ]
Li, Guoping [2 ]
机构
[1] Guangdong Univ Sci & Technol, Dongguan 523083, Peoples R China
[2] Shanghai Univ, Dept Elect Engn, Shanghai 200433, Peoples R China
来源
PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2021) | 2021年
关键词
Deep Neural Network; Intelligent Manufacturing; Data Analysis; Correlation Modeling; International Trade;
D O I
10.1109/ICICT50816.2021.9358660
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Correlation modeling of intelligent manufacturing industry upgradation and international trade based on deep neural network is discussed in this paper. In sensor technology, from the process of application solutions to the intelligent manufacturing technology present in the process of integration; the information required to obtain resources that then support to develop a comprehensive research summary with the application scheme of sensor technology for a specific process to perform this a more advanced general and flexible information guidance mechanism is required. Hence, the proposed research work has developed a novel deep neural network model to formulate the aforementioned tasks. Through the numerical simulation, the overall performance is validated.
引用
收藏
页码:505 / 508
页数:4
相关论文
共 18 条
[1]   Deep neural network concepts for background subtraction: A systematic review and comparative evaluation [J].
Bouwmans, Thierry ;
Jayed, Sajid ;
Sultana, Maryam ;
Jung, Soon Ki .
NEURAL NETWORKS, 2019, 117 :8-66
[2]   Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network [J].
Hannun, Awni Y. ;
Rajpurkar, Pranav ;
Haghpanahi, Masoumeh ;
Tison, Geoffrey H. ;
Bourn, Codie ;
Turakhia, Mintu P. ;
Ng, Andrew Y. .
NATURE MEDICINE, 2019, 25 (01) :65-+
[3]   Parametric Noise Injection: Trainable Randomness to Improve Deep Neural Network Robustness against Adversarial Attack [J].
He, Zhezhi ;
Rakin, Adnan Siraj ;
Fan, Deliang .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :588-597
[4]   Deep Neural Network Attribution Methods for Leakage Analysis and Symmetric Key Recovery [J].
Hettwer, Benjamin ;
Gehrer, Stefan ;
Gueneysu, Tim .
SELECTED AREAS IN CRYPTOGRAPHY - SAC 2019, 2020, 11959 :645-666
[5]  
Huang KY, 2019, INT CONF ACOUST SPEE, P5866, DOI 10.1109/ICASSP.2019.8682283
[6]   Sparse Deep Neural Network Graph Challenge [J].
Kepner, Jeremy ;
Alford, Simon ;
Gadepally, Vijay ;
Jones, Michael ;
Milechin, Lauren ;
Robinett, Ryan ;
Samsi, Sid .
2019 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2019,
[7]   Efficient Facial Expression Recognition Algorithm Based on Hierarchical Deep Neural Network Structure [J].
Kim, Ji-Hae ;
Kim, Byung-Gyu ;
Roy, Partha Pratim ;
Jeong, Da-Mi .
IEEE ACCESS, 2019, 7 :41273-41285
[8]   EDEN: Enabling Energy-Efficient, High-Performance Deep Neural Network Inference Using Approximate DRAM [J].
Koppula, Skanda ;
Orosa, Lois ;
Yaglikci, A. Giray ;
Azizi, Roknoddin ;
Shahroodi, Taha ;
Kanellopoulos, Konstantinos ;
Mutlu, Onur .
MICRO'52: THE 52ND ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, 2019, :166-181
[9]   Predicting Ion Mobility Collision Cross-Sections Using a Deep Neural Network: DeepCCS [J].
Plante, Pier-Luc ;
Francovic-Fontaine, Elina ;
May, Jody C. ;
McLean, John A. ;
Baker, Erin S. ;
Laviolette, Francois ;
Marchand, Mario ;
Corbeil, Jacques .
ANALYTICAL CHEMISTRY, 2019, 91 (08) :5191-5199
[10]   An Effective Training Scheme for Deep Neural Network in Edge Computing Enabled Internet of Medical Things (IoMT) Systems [J].
Pustokhina, Irina Valeryevna ;
Pustokhin, Denis Alexandrovich ;
Gupta, Deepak ;
Khanna, Ashish ;
Shankar, K. ;
Gia Nhu Nguyen .
IEEE ACCESS, 2020, 8 :107112-107123