Carbon nitride embedded MnO2 nanospheres decorated with low-content Pt nanoparticles as highly efficient and durable electrode material for solid state supercapacitors

被引:7
作者
Bin Yousaf, Ammar [1 ,2 ]
Khan, Rashid [2 ]
Imran, M. [2 ]
Fasehullah, Muhammad [3 ]
Zeb, Akif [2 ]
Zaidi, Syed Javaid [1 ]
Kasak, Peter [1 ]
机构
[1] Qatar Univ, Ctr Adv Mat, Doha 2713, Qatar
[2] Univ Sci & Technol China, CAS Ctr Excellence Nanosci, Natl Synchrotron Radiat Lab, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Hybrid nanostructure; Carbon nitride; Manganese oxide; Solid state supercapacitors; Energy storage devices; ELECTROCHEMICAL CAPACITORS; GRAPHENE NANOSHEETS; GOLD NANOPARTICLES; RAMAN-SPECTROSCOPY; HIGH-PERFORMANCE; COMPOSITES; FACILE; AG; NANOSTRUCTURES; POLYANILINE;
D O I
10.1016/j.jelechem.2017.07.035
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The provoking energy crises attracted and stimulated higher attention towards energy storage devices. Solid state supercapacitors proved to be one of the promising power devices for the storage and utilization of electrical energy. There are number of strategies have been adopted to develop and modify electrode material for supercapacitors application. Herein, we have synthesized highly active and durable hybrid electrode material for supercapacitors by decoration of low-content Pt nanoparticles on the surface of carbon nitride embedded MnO2 nanospheres. The morphology and crystallite structure of as-developed hybrid electrode material was confirmed by physical characterization tools. The conductive behavior of as-developed material was characterized by field emission and electrical properties. The practical capacitive performance was analyzed by detailed electrochemical measurements. The enhanced capacitive properties of as-developed Pt/MnO2/C3N4 nanocomposite can be mainly attributed to the increase of the conductivity of high surface area resulting in better diffusion channel for electrolyte ions and electrons in MnO2 nanospheres due to the presence of Pt nanoparticles. Durable and stable cycling performance was ascribed favourable interaction of the components in nanocomposite.
引用
收藏
页码:84 / 91
页数:8
相关论文
共 50 条
[1]   Electron Microscopy Study of Gold Nanoparticles Deposited on Transition Metal Oxides [J].
Akita, Tomoki ;
Kohyama, Masanori ;
Haruta, Masatake .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (08) :1773-1782
[2]   SIZE EFFECT ON MELTING TEMPERATURE OF GOLD PARTICLES [J].
BUFFAT, P ;
BOREL, JP .
PHYSICAL REVIEW A, 1976, 13 (06) :2287-2298
[3]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[4]  
Chang J, 2013, ADV FUNCT MATER, V23, P5074, DOI [10.1002/adfm201301851, 10.1002/adfm.201301851]
[5]  
Charlier JC, 2008, TOP APPL PHYS, V111, P673, DOI 10.1007/978-3-540-72865-8_21
[6]   Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica [J].
Chen, W ;
Cai, WP ;
Zhang, L ;
Wang, GZ ;
Zhang, LD .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 238 (02) :291-295
[7]   A facile method to improve the high rate capability of Co3O4 nanowire array electrodes [J].
Cheng, Hua ;
Lu, Zhou Guang ;
Deng, Jian Qiu ;
Chung, C. Y. ;
Zhang, Kaili ;
Li, Yang Yang .
NANO RESEARCH, 2010, 3 (12) :895-901
[8]   Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor [J].
Deng, Lingjuan ;
Hao, Zhengping ;
Wang, Jianfang ;
Zhu, Gang ;
Kang, Liping ;
Liu, Zong-Huai ;
Yang, Zupei ;
Wang, Zenglin .
ELECTROCHIMICA ACTA, 2013, 89 :191-198
[9]   Synthesis and electrochemical properties of MnO2 nanorods/graphene composites for supercapacitor applications [J].
Deng, SiXu ;
Sun, Dan ;
Wu, ChunHui ;
Wang, Hao ;
Liu, JingBing ;
Sun, YuXiu ;
Yan, Hui .
ELECTROCHIMICA ACTA, 2013, 111 :707-712
[10]   Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density [J].
Fan, Zhuangjun ;
Yan, Jun ;
Wei, Tong ;
Zhi, Linjie ;
Ning, Guoqing ;
Li, Tianyou ;
Wei, Fei .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (12) :2366-2375