Triangle-free Hamiltonian Kneser graphs

被引:27
作者
Chen, YC [1 ]
机构
[1] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
关键词
Hamiltonian cycles; uniform subset graphs; antipodal layers problem; Kneser graphs;
D O I
10.1016/S0095-8956(03)00040-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Kneser graph K(n, k) has as vertices the k-subsets of {1, 2,..., n}. Two vertices are adjacent if the k-sets are disjoint. When n<3k, the Kneser Graph K(n,k) has no triangle. In this paper, we prove that K(n, k) is Hamiltonian for ngreater than or equal to(3k + 1 + root5k(2) - 2k + 1)/2, and extend this to the bipartite Kneser graphs. Note that (3k + 1 + root5k(2) - 2k + 1)/2 < 2.62k + 1. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 20 条
[1]  
Baranyai Zs., 1975, C MATH SOC JANOS BOL, V10, P91
[2]   HAMILTONIAN UNIFORM SUBSET GRAPHS [J].
CHEN, BL ;
LIH, KW .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1987, 42 (03) :257-263
[3]   Kneser graphs are Hamiltonian for n ≥ 3k [J].
Chen, YC .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 80 (01) :69-79
[4]   Presence of neuronal nitric oxide synthase in autonomic and sensory ganglion neurons innervating the lacrimal glands of the cat: an immunofluorescent and retrograde tracer double-labeling study [J].
Cheng, SB ;
Kuchiiwa, S ;
Kuchiiwa, T ;
Nonaka, S ;
Nakagawa, S .
JOURNAL OF CHEMICAL NEUROANATOMY, 2001, 22 (03) :147-155
[5]   Binomial and Q-binomial coefficient inequalities related to the Hamiltonicity of the Kneser graphs and their Q-analogues [J].
Clark, WE ;
Ismail, MEH .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 76 (01) :83-98
[6]  
DEJTER IJ, 1985, GRAPH THEORY APPL AL, P189
[7]  
HAVEL I, 1982, GRAPHS OTHER COMBINA, P101
[8]  
HEINRICH K, 1978, J AUSTR MATH SOC A, V26, P89
[9]   THE ANTIPODAL LAYERS PROBLEM [J].
HURLBERT, G .
DISCRETE MATHEMATICS, 1994, 128 (1-3) :237-245
[10]  
Katona G.O.H., 1968, THEORY GRAPHS, P187