Jacobi Spectral Collocation Method for the Time Variable-Order Fractional Mobile-Immobile Advection-Dispersion Solute Transport Model

被引:26
作者
Ma, Heping [1 ]
Yang, Yubo [1 ,2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Jiaxing Univ, Nanhu Coll, Jiaxing 314001, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
Coimbra variable-order fractional derivative; Jacobi polynomials; spectral collocation; method; Mobile-immobile advection-dispersion model; FINITE-DIFFERENCE METHOD; NUMERICAL-SOLUTION; APPROXIMATION; OPERATORS; EQUATION;
D O I
10.4208/eajam.141115.060616a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An efficient high order numerical method is presented to solve the mobile immobile advection-dispersion model with the Coimbra time variable-order fractional derivative, which is used to simulate solute transport in watershed catchments and rivers. On establishing an efficient recursive algorithm based on the properties of Jacobi polynomials to approximate the Coimbra variable-order fractional derivative operator, we use spectral collocation method with both temporal and spatial discretisation to solve the time variable-order fractional mobile-immobile advection-dispersion model. Numerical examples then illustrate the effectiveness and high order convergence of our approach.
引用
收藏
页码:337 / 352
页数:16
相关论文
共 41 条
[11]   A FAST FINITE ELEMENT METHOD FOR SPACE-FRACTIONAL DISPERSION EQUATIONS ON BOUNDED DOMAINS IN R2 [J].
Du, Ning ;
Wang, Hong .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (03) :A1614-A1635
[12]   Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation [J].
Ervin, Vincent J. ;
Heuer, Norbert ;
Roop, John Paul .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (02) :572-591
[13]   ANALOG SIMULATION OF NON-INTEGER ORDER TRANSFER FUNCTIONS FOR ANALYSIS OF ELECTRODE PROCESSES [J].
ICHISE, M ;
NAGAYANAGI, Y ;
KOJIMA, T .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1971, 33 (02) :253-+
[14]   Control of damping oscillations by fractional differential operator with time-dependent order [J].
Ingman, D ;
Suzdalnitsky, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (52) :5585-5595
[15]   Higher order finite difference method for the reaction and anomalous-diffusion equation [J].
Li, Changpin ;
Ding, Hengfei .
APPLIED MATHEMATICAL MODELLING, 2014, 38 (15-16) :3802-3821
[16]   Spectral approximations to the fractional integral and derivative [J].
Li, Changpin ;
Zeng, Fanhai ;
Liu, Fawang .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (03) :383-406
[17]   A SPACE-TIME SPECTRAL METHOD FOR THE TIME FRACTIONAL DIFFUSION EQUATION [J].
Li, Xianjuan ;
Xu, Chuanju .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) :2108-2131
[18]   Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation [J].
Lin, R. ;
Liu, F. ;
Anh, V. ;
Turner, I. .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 212 (02) :435-445
[19]   Variable order and distributed order fractional operators [J].
Lorenzo, CF ;
Hartley, TT .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :57-98
[20]  
Mainardi F., 2000, Fractional Calculus and Waves in Linear Viscoelasticity: an Introduction to Mathematical Models, DOI DOI 10.1142/P926