Jacobi Spectral Collocation Method for the Time Variable-Order Fractional Mobile-Immobile Advection-Dispersion Solute Transport Model

被引:22
作者
Ma, Heping [1 ]
Yang, Yubo [1 ,2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Jiaxing Univ, Nanhu Coll, Jiaxing 314001, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
Coimbra variable-order fractional derivative; Jacobi polynomials; spectral collocation; method; Mobile-immobile advection-dispersion model; FINITE-DIFFERENCE METHOD; NUMERICAL-SOLUTION; APPROXIMATION; OPERATORS; EQUATION;
D O I
10.4208/eajam.141115.060616a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An efficient high order numerical method is presented to solve the mobile immobile advection-dispersion model with the Coimbra time variable-order fractional derivative, which is used to simulate solute transport in watershed catchments and rivers. On establishing an efficient recursive algorithm based on the properties of Jacobi polynomials to approximate the Coimbra variable-order fractional derivative operator, we use spectral collocation method with both temporal and spatial discretisation to solve the time variable-order fractional mobile-immobile advection-dispersion model. Numerical examples then illustrate the effectiveness and high order convergence of our approach.
引用
收藏
页码:337 / 352
页数:16
相关论文
共 41 条
  • [1] Abdelkawy MA, 2015, ROM REP PHYS, V67, P773
  • [2] [Anonymous], 2006, THEORY APPL FRACTION
  • [3] [Anonymous], 1993, INTRO FRACTIONAL CA
  • [4] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [5] [Anonymous], FRACTIONAL CALCULUS
  • [6] Application of a fractional advection-dispersion equation
    Benson, DA
    Wheatcraft, SW
    Meerschaert, MM
    [J]. WATER RESOURCES RESEARCH, 2000, 36 (06) : 1403 - 1412
  • [7] Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation
    Bhrawy, A. H.
    Zaky, M. A.
    [J]. NONLINEAR DYNAMICS, 2015, 80 (1-2) : 101 - 116
  • [8] A high order schema for the numerical solution of the fractional ordinary differential equations
    Cao, Junying
    Xu, Chuanju
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 238 : 154 - 168
  • [9] Numerical solution for the variable order linear cable equation with Bernstein polynomials
    Chen, Yiming
    Liu, Liqing
    Li, Baofeng
    Sun, Yannan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 329 - 341
  • [10] Mechanics with variable-order differential operators
    Coimbra, CFM
    [J]. ANNALEN DER PHYSIK, 2003, 12 (11-12) : 692 - 703