Commability and Focal Locally Compact Groups

被引:20
作者
Cornulier, Yves [1 ]
机构
[1] Univ Paris 11, Math Lab, F-91405 Orsay, France
关键词
Compacting automorphisms; topological FC-center; locally compact groups; Gromov-hyperbolic groups; focal groups; commability; millefeuille spaces; quasi-isometric classification; LARGE-SCALE GEOMETRY; TOPOLOGICAL-GROUPS; AUTOMORPHISMS; GRAPHS; TREES;
D O I
10.1512/iumj.2015.64.5441
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of commability between locally compact groups, namely, the equivalence relation generated by co-compact inclusions and quotients by compact normal subgroups. We give a classification of focal hyperbolic locally compact groups up to commability. In the mixed case, it involves a real parameter, which is shown to be a quasi-isometry invariant.
引用
收藏
页码:115 / 150
页数:36
相关论文
共 24 条
[1]   SPECKER COMPACTIFICATIONS OF LOCAL COMPACT TOPOLOGIC GROUPS [J].
ABELS, H .
MATHEMATISCHE ZEITSCHRIFT, 1974, 135 (04) :325-361
[2]  
Bass H, 1990, J. Amer. Math. Soc., V3, P843
[3]   Dimension zero at all scales [J].
Brodskiy, N. ;
Dydak, J. ;
Higes, J. ;
Mitra, A. .
TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (14) :2729-2740
[4]   Contracting automorphisms and L p -cohomology in degree one [J].
Cornulier, Yves ;
Tessera, Romain .
ARKIV FOR MATEMATIK, 2011, 49 (02) :295-324
[5]   Quasisymmetric Maps of Boundaries of Amenable Hyperbolic Groups [J].
Dymarz, Tullia .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (02) :329-343
[6]   Mostow-Margulis rigidity with locally compact targets [J].
Furman, A .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (01) :30-59
[7]   HOMOGENEOUS MANIFOLDS OF NEGATIVE CURVATURE [J].
HEINTZE, E .
MATHEMATISCHE ANNALEN, 1974, 211 (01) :23-34
[8]  
Möller RG, 2003, MATH SCAND, V92, P261
[9]   Quasi-actions on trees I. Bounded valence [J].
Mosher, L ;
Sageev, M ;
Whyte, K .
ANNALS OF MATHEMATICS, 2003, 158 (01) :115-164
[10]   Maximally symmetric trees [J].
Mosher, L ;
Sageev, M ;
Whyte, K .
GEOMETRIAE DEDICATA, 2002, 92 (01) :195-233