A bound for the number of automorphisms of an arithmetic Riemann surface

被引:3
|
作者
Belolipetsky, M [1 ]
Jones, GA
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Univ Southampton, Fac Math Studies, Southampton S017 1BJ, Hants, England
关键词
D O I
10.1017/S0305004104008035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for every g >= 2 there is a compact arithmetic Riemann surface of genus g with at least 4(g - 1) automorphisms, and that this lower bound is attained by infinitely many genera, the smallest being 24.
引用
收藏
页码:289 / 299
页数:11
相关论文
共 50 条