Robust a posteriori error estimation for nonconforming finite element approximation

被引:103
作者
Ainsworth, M
机构
[1] Univ Strathclyde, Dept Math, Glasgow G1 1XH, Lanark, Scotland
[2] Newton Inst Math Sci, Cambridge, England
关键词
robust a posteriori error estimation; nonconforming finite element; Crouzeix-Raviart element; saturation assumption;
D O I
10.1137/S0036142903425112
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The equilibrated residual method for a posteriori error estimation is extended to nonconforming finite element schemes for the approximation of linear second order elliptic equations where the permeability coefficient is allowed to undergo large jumps in value across interfaces between differing media. The estimator is shown to provide a computable upper bound on the error and, up to a constant depending only on the geometry, provides two-sided bounds on the error. The robustness of the estimator is also studied and the dependence of the constant on the jumps in permeability is given explicitly.
引用
收藏
页码:2320 / 2341
页数:22
相关论文
共 18 条
[1]  
AGOUZAL A, 1994, APPL MATH LETT, V7, P1017
[2]  
AINSWORTH M., 2000, PURE APPL MATH
[3]  
[Anonymous], RAIRO R
[4]  
Bao WZ, 1998, RAIRO-MATH MODEL NUM, V32, P843
[5]  
Bernardi C, 2000, NUMER MATH, V85, P579, DOI 10.1007/s002110000135
[6]  
BRENNER S. C., 1994, TEXTS APPL MATH, V15
[7]   A posteriori error estimates for nonconforming finite element methods [J].
Carstensen, C ;
Bartels, S ;
Jansche, S .
NUMERISCHE MATHEMATIK, 2002, 92 (02) :233-256
[8]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[9]   ERROR ESTIMATORS FOR NONCONFORMING FINITE-ELEMENT APPROXIMATIONS OF THE STOKES PROBLEM [J].
DARI, E ;
DURAN, R ;
PADRA, C .
MATHEMATICS OF COMPUTATION, 1995, 64 (211) :1017-1033
[10]  
DARI E, 1996, RAIRO-MATH MODEL NUM, V30, P385