A full-scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy

被引:118
作者
Hueso-Gonzalez, Fernando
Rabe, Moritz
Ruggieri, Thomas A.
Bortfeld, Thomas
Verburg, Joost M. [1 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiat Oncol, Boston, MA 02114 USA
关键词
prompt gamma-rays; proton therapy; range verification; radiotherapy; gamma-ray detection; COMPTON CAMERA; 1ST TEST; ENERGY; OPTIMIZATION; TOMOGRAPHY; PREDICTION; EMISSION; BEAMS;
D O I
10.1088/1361-6560/aad513
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present a full-scale clinical prototype system for in vivo range verification of proton pencil-beams using the prompt gamma-ray spectroscopy method. The detection system consists of eight LaBr3 scintillators and a tungsten collimator, mounted on a rotating frame. Custom electronics and calibration algorithms have been developed for the measurement of energy- and time-resolved gamma-ray spectra during proton irradiation at a clinical dose rate. Using experimentally determined nuclear reaction cross sections and a GPU-accelerated Monte Carlo simulation, a detailed model of the expected gamma-ray emissions is created for each individual pencil-beam. The absolute range of the proton pencil-beams is determined by minimizing the discrepancy between the measurement and this model, leaving the absolute range of the beam and the elemental concentrations of the irradiated matter as free parameters. The system was characterized in a clinical-like situation by irradiating different phantoms with a scanning pencil-beam. A dose of 0.9 Gy was delivered to a 5 x 10 x 10 cm(3) target with a beam current of 2 nA incident on the phantom. Different range shifters and materials were used to test the robustness of the verification method and to calculate the accuracy of the detected range. The absolute proton range was determined for each spot of the distal energy layer with a mean statistical precision of 1.1 mm at a 95% confidence level and a mean systematic deviation of 0.5 mm, when aggregating pencil-beam spots within a cylindrical region of 10 mm radius and 10 mm depth. Small range errors that we introduced were successfully detected and even large differences in the elemental composition do not affect the range verification accuracy. These results show that our system is suitable for range verification during patient treatments in our upcoming clinical study.
引用
收藏
页数:20
相关论文
共 43 条
[1]   Is it necessary to plan with safety margins for actively scanned proton therapy? [J].
Albertini, F. ;
Hug, E. B. ;
Lomax, A. J. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (14) :4399-4413
[2]   Development of a Compton camera for prompt-gamma medical imaging [J].
Aldawood, S. ;
Thirolf, P. G. ;
Miani, A. ;
Boehmer, M. ;
Dedes, G. ;
Gernhauser, R. ;
Lang, C. ;
Liprandi, S. ;
Maier, L. ;
Marinsek, T. ;
Mayerhofer, M. ;
Schaart, D. R. ;
Lozano, I. Valencia ;
Parodi, K. .
RADIATION PHYSICS AND CHEMISTRY, 2017, 140 :190-197
[3]   Recent developments in GEANT4 [J].
Allison, J. ;
Amako, K. ;
Apostolakis, J. ;
Arce, P. ;
Asai, M. ;
Aso, T. ;
Bagli, E. ;
Bagulya, A. ;
Banerjee, S. ;
Barrand, G. ;
Beck, B. R. ;
Bogdanov, A. G. ;
Brandt, D. ;
Brown, J. M. C. ;
Burkhardt, H. ;
Canal, Ph. ;
Cano-Ott, D. ;
Chauvie, S. ;
Cho, K. ;
Cirrone, G. A. P. ;
Cooperman, G. ;
Cortes-Giraldo, M. A. ;
Cosmo, G. ;
Cuttone, G. ;
Depaola, G. ;
Desorgher, L. ;
Dong, X. ;
Dotti, A. ;
Elvira, V. D. ;
Folger, G. ;
Francis, Z. ;
Galoyan, A. ;
Garnier, L. ;
Gayer, M. ;
Genser, K. L. ;
Grichine, V. M. ;
Guatelli, S. ;
Gueye, P. ;
Gumplinger, P. ;
Howard, A. S. ;
Hrivnacova, I. ;
Hwang, S. ;
Incerti, S. ;
Ivanchenko, A. ;
Ivanchenko, V. N. ;
Jones, F. W. ;
Jun, S. Y. ;
Kaitaniemi, P. ;
Karakatsanis, N. ;
Karamitrosi, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 835 :186-225
[4]  
Amanatides John, 1987, P EUROGRAPHICS, P3
[5]   On the clinical spatial resolution achievable with protons and heavier charged particle radiotherapy beams [J].
Andreo, Pedro .
PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (11) :N205-N215
[6]   Detector Dead Time Determination and Optimal Counting Rate for a Detector Near a Spallation Source or a Subcritical Multiplying System [J].
Becares, V. ;
Blazquez, J. .
SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS, 2012, 2012
[7]  
Berger M., NIST, PML, DOI [10.18434/T48G6X, DOI 10.18434/T48G6X]
[8]   RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations [J].
Capote, R. ;
Herman, M. ;
Oblozinsky, P. ;
Young, P. C. ;
Goriely, S. ;
Belgya, T. ;
Ignatyuk, A. V. ;
Koning, A. J. ;
Hilaire, S. ;
Plujko, V. A. ;
Avrigeanu, M. ;
Bersillon, O. ;
Chadwick, M. B. ;
Fukahori, T. ;
Ge, Zhigang ;
Han, Yinlu ;
Kailas, S. ;
Kopecky, J. ;
Maslov, V. M. ;
Reffo, G. ;
Sin, M. ;
Soukhovitskii, E. Sh. ;
Talou, P. .
NUCLEAR DATA SHEETS, 2009, 110 (12) :3107-3213
[9]   Prompt Gamma Rays Detected with a BGO Block Compton Camera Reveal Range Deviations of Therapeutic Proton Beams [J].
Hueso-Gonzalez F. ;
Pausch G. ;
Petzoldt J. ;
Romer K.E. ;
Enghardt W. .
IEEE Transactions on Radiation and Plasma Medical Sciences, 2017, 1 (01) :76-86
[10]   Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam [J].
Hueso-Gonzalez, F. ;
Golnik, C. ;
Berthel, M. ;
Dreyer, A. ;
Enghardt, W. ;
Fiedler, F. ;
Heidel, K. ;
Kormoll, T. ;
Rohling, H. ;
Schoene, S. ;
Schwengner, R. ;
Wagner, A. ;
Pausch, G. .
JOURNAL OF INSTRUMENTATION, 2014, 9