Heuristic algorithms for the general nonlinear separable knapsack problem

被引:15
作者
D'Ambrosio, Claudia [1 ]
Martello, Silvano [1 ]
机构
[1] Univ Bologna, DEIS, I-40136 Bologna, Italy
关键词
Nonlinear knapsack; Nonconvexity; Separable knapsack; Heuristic; Local search; Mixed integer nonlinear programming;
D O I
10.1016/j.cor.2010.07.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider the nonlinear knapsack problem with separable nonconvex functions. Depending on the assumption on the integrality of the variables, this problem can be modeled as a nonlinear programming or as a (mixed) integer nonlinear programming problem. In both cases, this class of problems is very difficult to solve, both from a theoretical and a practical viewpoint. We propose a fast heuristic algorithm, and a local search post-optimization procedure. A series of computational comparisons with a heuristic method for general nonconvex mixed integer nonlinear programming and with global optimization methods shows that the proposed algorithms provide high-quality solutions within very short computing times. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:505 / 513
页数:9
相关论文
共 9 条
[1]  
[Anonymous], 1990, Knapsack Problems: Algorithms and ComputerImplementations
[2]   The nonlinear knapsack problem - algorithms and applications [J].
Bretthauer, KM ;
Shetty, B .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002, 138 (03) :459-472
[3]  
D'Ambrosio C, 2009, LECT NOTES COMPUT SC, V5757, P107, DOI 10.1007/978-3-642-04128-0_10
[4]  
Horst R., 1990, Global Optimization: Deterministic Approaches, DOI DOI 10.1007/978-3-662-02598-7
[5]  
Ibaraki T., 1988, Resource allocation problems: algorithmic approaches
[6]   Nonconvex piecewise linear knapsack problems [J].
Kameshwaran, S. ;
Narahari, Y. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 192 (01) :56-68
[7]  
Kellerer H., 2004, KNAPSACK PROBLEMS, DOI DOI 10.1007/978-3-540-24777-710
[8]   SMART GREEDY PROCEDURE FOR SOLVING A NONLINEAR KNAPSACK CLASS OF RELIABILITY OPTIMIZATION PROBLEMS [J].
OHTAGAKI, H ;
NAKAGAWA, Y ;
IWASAKI, A ;
NARIHISA, H .
MATHEMATICAL AND COMPUTER MODELLING, 1995, 22 (10-12) :261-272
[9]   A unified method for a class of convex separable nonlinear knapsack problems [J].
Zhang, Bin ;
Hua, Zhongsheng .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 191 (01) :1-6