THE ADOMIAN DECOMPOSITION METHOD AND THE FRACTIONAL COMPLEX TRANSFORM FOR FRACTIONAL BRATU-TYPE EQUATION

被引:2
|
作者
Wang, Huan-Huan [1 ]
Hu, Yue [1 ]
Wang, Kang-Le [2 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo, Peoples R China
[2] Xidian Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
来源
THERMAL SCIENCE | 2017年 / 21卷 / 04期
关键词
He's fractional derivative; fractional complex transform; Adomian decomposition method; fractional Bratu-type equation; DIFFERENTIAL-EQUATIONS;
D O I
10.2298/TSCI160805058W
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, the Adomian decomposition method and the fractional complex transform are adopted to solve a fractional Bratu-type equations based on He's fractional derivative. The solution process is elucidated and analytical results can be directly used in practical applications.
引用
收藏
页码:1713 / 1717
页数:5
相关论文
共 50 条
  • [1] Adomian Decomposition Method for Solving Fractional Bratu-type Equations
    Ghazanfari, Bahman
    Sepahvandzadeh, Amaneh
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2014, 8 (03): : 236 - 244
  • [2] Adomian decomposition method for a reliable treatment of the Bratu-type equations
    Wazwaz, AM
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 166 (03) : 652 - 663
  • [3] A novel representation of numerical solution for fractional Bratu-type equation
    Khalouta, Ali
    ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2022, 15 (01): : 93 - 109
  • [4] The Numerical Solution of Fractional Bratu-Type Differential Equations
    Donmez Demir, Duygu
    Zeybek, Aylin
    2ND INTERNATIONAL CONFERENCE ON COMPUTATIONAL MATHEMATICS AND ENGINEERING SCIENCES (CMES2017), 2017, 13
  • [5] Analytical Solution of Generalized Bratu-Type Fractional Differential Equations Using the Homotopy Perturbation Transform Method
    Alhamzi, Ghaliah
    Gouri, Aafrin
    Alkahtani, Badr Saad T.
    Dubey, Ravi Shanker
    AXIOMS, 2024, 13 (02)
  • [6] The Chebyshev wavelet method for solving fractional integral and differential equations of bratu-type
    Chen, Yiming
    Sun, Lu
    Liu, Lili
    Xie, Jiaquan
    Journal of Computational Information Systems, 2013, 9 (14): : 5601 - 5609
  • [7] Analytical Solutions for a Generalized Nonlinear Local Fractional Bratu-Type Equation in a Fractal Environment
    Alhamzi, Ghaliah
    Dubey, Ravi Shanker
    Alkahtani, Badr Saad T.
    Saini, G. L.
    FRACTAL AND FRACTIONAL, 2024, 8 (01)
  • [8] THE SUCCESSIVE DIFFERENTIATION METHOD FOR SOLVING BRATU EQUATION AND BRATU-TYPE EQUATIONS
    Wazwaz, Abdul-Majid
    ROMANIAN JOURNAL OF PHYSICS, 2016, 61 (5-6): : 774 - 783
  • [9] RKM for solving Bratu-type differential equations of fractional order
    Babolian, Esmail
    Javadi, Shahnam
    Moradi, Eslam
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (06) : 1548 - 1557
  • [10] ANALYTICAL SOLUTION FOR NON-LINEAR LOCAL FRACTIONAL BRATU-TYPE EQUATION IN A FRACTAL SPACE
    Yao, Shao-Wen
    Li, Wen-Jie
    Wang, Kang-Le
    THERMAL SCIENCE, 2020, 24 (06): : 3941 - 3947