An energy model for the transient flow boiling crisis under highly subcooled conditions at atmospheric pressure

被引:7
作者
Nop, R. [1 ,2 ,3 ]
Duluc, M. -C. [2 ,4 ]
Dorville, N. [1 ]
Kossolapov, A. [3 ]
Chavagnat, F. [3 ]
Bucci, M. [3 ]
机构
[1] Univ Paris Saclay, CEA, Serv Thermohydraul & Mecan Fluides, F-91191 Gif Sur Yvette, France
[2] Univ Paris Saclay, CNRS, Lab Interdisciplinaire Sci Numer, F-91400 Orsay, France
[3] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Conservatoire Natl Arts & Metiers, F-75003 Paris, France
关键词
Subcooled flow boiling crisis; Critical heat flux; Exponential power escalation; Critical energy model; CRITICAL HEAT-FLUX; TURBULENT CHANNEL FLOW; PREDICTION; WATER; CHF; POOL;
D O I
10.1016/j.ijthermalsci.2021.107042
中图分类号
O414.1 [热力学];
学科分类号
摘要
We present an original model describing the transient flow boiling crisis of water at high subcooling and atmospheric pressure. We hypothesize that in such conditions, the mechanism of the boiling crisis is the prevention of the bubbles recondensation when a thin fluid layer near the heated wall reaches temperature saturation conditions. To capture this phenomenon, we propose an energy model describing the heat exchanges in the thin fluid layer throughout the entire transient from the initiation to the boiling crisis. We bring to light a non-dimensional mathematical relation capturing 168 working points in the investigated range of power escalation period (from 5 to 500 ms), subcooling (from 25 to 75 K) and Reynolds number (8,500 to 35,000) at atmospheric pressure. Its fitting accuracy is excellent for the high subcooling (50 K and above): more than 75 % of these points are predicted with +/- 5 % error. This relationship enables the prediction of the transient critical heat flux based on the steady-state value or a single tuning constant. The non-dimensional groups deduced from the study are relevant tools to identify the major physical phenomena involved in transient boiling crisis and to quantify the impact of the different operating parameters.
引用
收藏
页数:17
相关论文
共 33 条
[1]   Towards understanding the critical heat flux for industrial applications [J].
Ahmed, Wael H. ;
El-Nakla, Meamer A. ;
Ismail, Basel I. .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2010, 36 (03) :153-165
[2]   A mechanistic IR calibration technique for boiling heat transfer investigations [J].
Bucci, Matteo ;
Richenderfer, Andrew ;
Su, Guan-Yu ;
McKrell, Thomas ;
Buongiorno, Jacopo .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2016, 83 :115-127
[3]   RATIONALIZATION OF EXISTING MECHANISTIC MODELS FOR THE PREDICTION OF WATER SUBCOOLED FLOW BOILING CRITICAL HEAT-FLUX [J].
CELATA, GP ;
CUMO, M ;
MARIANI, A ;
SIMONCINI, M ;
ZUMMO, G .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1994, 37 :347-360
[4]  
Celata GP, 2003, CISM COUR L, P325
[5]   ASSESSMENT OF CORRELATIONS AND MODELS FOR THE PREDICTION OF CHF IN WATER SUBCOOLED FLOW BOILING [J].
CELATA, GP ;
CUMO, M ;
MARIANI, A .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1994, 37 (02) :237-255
[6]   Single-phase heat transfer regimes in forced flow conditions under exponential heat inputs [J].
Chavagnat, F. ;
Nop, R. ;
Dorville, N. ;
Phillips, B. ;
Bucci, M. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 174
[7]  
Crocker J., 1964, Tech. Rep. IDO-17000
[8]  
Dietrich J.R., 1954, BORAX EXPT
[9]   A Web services accessible database of turbulent channel flow and its use for testing a new integral wall model for LES [J].
Graham, J. ;
Kanov, K. ;
Yang, X. I. A. ;
Lee, M. ;
Malaya, N. ;
Lalescu, C. C. ;
Burns, R. ;
Eyink, G. ;
Szalay, A. ;
Moser, R. D. ;
Meneveau, C. .
JOURNAL OF TURBULENCE, 2016, 17 (02) :181-215