Strategies to Promote Vascularization in 3D Printed Tissue Scaffolds: Trends and Challenges

被引:55
作者
Joshi, Akshat [1 ]
Choudhury, Saswat [1 ]
Gugulothu, Sriram Bharath [2 ]
Visweswariah, Sandhya S. [1 ,3 ]
Chatterjee, Kaushik [1 ,2 ]
机构
[1] Indian Inst Sci, Ctr BioSyst Sci & Engn, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, Karnataka, India
[3] Indian Inst Sci, Dept Mol Reprod Dev & Genet, Bangalore 560012, Karnataka, India
关键词
ENDOTHELIAL GROWTH-FACTOR; POLY(LACTIC ACID) SCAFFOLDS; IN-VITRO; FACTOR DELIVERY; THERAPEUTIC ANGIOGENESIS; PDGF-BB; VEGF; REGENERATION; CONSTRUCTS; INDUCTION;
D O I
10.1021/acs.biomac.2c00423
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ABSTRACT: Three-dimensional (3D) printing techniques for scaffold fabrication have shown promising advancements in recent years owing to the ability of the latest high-performance printers to mimic the native tissue down to submicron scales. Nevertheless, host integration and performance of scaffolds in vivo have been severely limited owing to the lack of robust strategies to promote vascularization in 3D printed scaffolds. As a result, researchers over the past decade have been exploring strategies that can promote vascularization in 3D printed scaffolds toward enhancing scaffold functionality and ensuring host integration. Various emerging strategies to enhance vascularization in 3D printed scaffolds are discussed. These approaches include simple strategies such as the enhancement of vascular in-growth from the host upon implantation by scaffold modifications to complex approaches wherein scaffolds are fabricated with their own vasculature that can be directly anastomosed or microsurgically connected to the host vasculature, thereby ensuring optimal integration. The key differences among the techniques, their pros and cons, and the future opportunities for utilizing each technique are highlighted here. The Review concludes with the current limitations and future directions that can help 3D printing emerge as an effective biofabrication technique to realize tissues with physiologically relevant vasculatures to ultimately accelerate clinical translation.
引用
收藏
页码:2730 / 2751
页数:22
相关论文
共 159 条
[11]   Therapeutic angiogenesis due to balanced single-vector delivery of VEGF and PDGF-BB [J].
Banfi, Andrea ;
von Degenfeld, Georges ;
Gianni-Barrera, Roberto ;
Reginato, Silvia ;
Merchant, Milton J. ;
McDonald, Donald M. ;
Blau, Helen M. .
FASEB JOURNAL, 2012, 26 (06) :2486-2497
[12]   PDGF-BB MODULATES ENDOTHELIAL PROLIFERATION AND ANGIOGENESIS IN-VITRO VIA PDGF BETA-RECEPTORS [J].
BATTEGAY, EJ ;
RUPP, J ;
IRUELAARISPE, L ;
SAGE, EH ;
PECH, M .
JOURNAL OF CELL BIOLOGY, 1994, 125 (04) :917-928
[13]   Volumetric Bioprinting of Complex Living-Tissue Constructs within Seconds [J].
Bernal, Paulina Nunez ;
Delrot, Paul ;
Loterie, Damien ;
Li, Yang ;
Malda, Jos ;
Moser, Christophe ;
Levato, Riccardo .
ADVANCED MATERIALS, 2019, 31 (42)
[14]  
Bittner Sean M., 2018, Bioprinting, V12, pe00032, DOI 10.1016/j.bprint.2018.e00032
[15]   Bioprinting of a functional vascularized mouse thyroid gland construct [J].
Bulanova, Elena A. ;
Koudan, Elizaveta V. ;
Degosserie, Jonathan ;
Heymans, Charlotte ;
Pereira, Frederico D. A. S. ;
Parfenov, Vladislav A. ;
Sun, Yi ;
Wang, Qi ;
Akhmedova, Suraya A. ;
Sviridova, Irina K. ;
Sergeeva, Natalia S. ;
Frank, Georgy A. ;
Khesuani, Yusef D. ;
Pierreux, Christophe E. ;
Mironov, Vladimir A. .
BIOFABRICATION, 2017, 9 (03)
[16]   Characterization and in ovo vascularization of a 3D-printed hydroxyapatite scaffold with different extracellular matrix coatings under perfusion culture [J].
Burgio, Floriana ;
Rimmer, Natalie ;
Pieles, Uwe ;
Buschmann, Johanna ;
Beaufils-Hugot, Marina .
BIOLOGY OPEN, 2018, 7 (12)
[17]   Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2 [J].
Cao, RH ;
Bråkenhielm, E ;
Pawliuk, R ;
Wariaro, D ;
Post, MJ ;
Wahlberg, E ;
Leboulch, P ;
Cao, YH .
NATURE MEDICINE, 2003, 9 (05) :604-613
[18]  
Cengiz I. F., 2016, Bioprinting, V1-2, P1, DOI 10.1016/j.bprint.2016.05.001
[19]   Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo [J].
Chen, Shangsi ;
Shi, Yufei ;
Zhang, Xin ;
Ma, Jun .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 112
[20]   Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting [J].
Chen, Yi-Wen ;
Shen, Yu-Fang ;
Ho, Chia-Che ;
Yu, Joyce ;
Wu, Yuan-Haw Andrew ;
Wang, Kan ;
Shih, Cheng-Ting ;
Shie, Ming-You .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 91 :679-687