Spatiotemporal blocking of the bouncy particle sampler for efficient inference in state-space models

被引:2
|
作者
Goldman, Jacob Vorstrup [1 ]
Singh, Sumeetpal S. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Signal Proc & Commun Lab, Cambridge, England
基金
英国工程与自然科学研究理事会;
关键词
Markov chain Monte Carlo; Piecewise-deterministic Markov process; Bouncy particle sampler; Particle Gibbs; State-space model; GIBBS; STABILITY; FILTER;
D O I
10.1007/s11222-021-10034-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a novel blocked version of the continuous-time bouncy particle sampler of Bouchard-Cote et al. (J Am Stat Assoc 113(522):855-867, 2018) which is applicable to any differentiable probability density. This alternative implementation is motivated by blocked Gibbs sampling for state-space models (Singh et al. in Biometrika 104(4):953-969, 2017) and leads to significant improvement in terms of effective sample size per second, and furthermore, allows for significant parallelization of the resulting algorithm. The new algorithms are particularly efficient for latent state inference in high-dimensional state-space models, where blocking in both space and time is necessary to avoid degeneracy of MCMC. The efficiency of our blocked bouncy particle sampler, in comparison with both the standard implementation of the bouncy particle sampler and the particle Gibbs algorithm of Andrieu et al. (J R Stat Soc Ser B Stat Methodol 72(3):269-342, 2010), is illustrated numerically for both simulated data and a challenging real-world financial dataset.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Spatiotemporal blocking of the bouncy particle sampler for efficient inference in state-space models
    Jacob Vorstrup Goldman
    Sumeetpal S. Singh
    Statistics and Computing, 2021, 31
  • [2] The Gibbs sampler with particle efficient importance sampling for state-space models*
    Grothe, Oliver
    Kleppe, Tore Selland
    Liesenfeld, Roman
    ECONOMETRIC REVIEWS, 2019, 38 (10) : 1152 - 1175
  • [3] Efficient State-Space Inference of Periodic Latent Force Models
    Reece, Steven
    Ghosh, Siddhartha
    Rogers, Alex
    Roberts, Stephen
    Jennings, Nicholas R.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 2337 - 2397
  • [4] Efficient state-space inference of periodic latent force models
    Reece, Steven
    Ghosh, Siddhartha
    Rogers, Alex
    Roberts, Stephen
    Jennings, Nicholas R.
    Journal of Machine Learning Research, 2014, 15 : 2337 - 2397
  • [5] On Disturbance State-Space Models and the Particle Marginal Metropolis-Hastings Sampler
    Murray, Lawrence M.
    Jones, Emlyn M.
    Parslow, John
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2013, 1 (01): : 494 - 521
  • [6] Particle MCMC algorithms and architectures for accelerating inference in state-space models
    Mingas, Grigorios
    Bottolo, Leonardo
    Bouganis, Christos-Savvas
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 83 : 413 - 433
  • [7] State inference in variational Bayesian nonlinear state-space models
    Raiko, T
    Tornio, M
    Honkela, A
    Karhunen, J
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 222 - 229
  • [8] Biased Online Parameter Inference for State-Space Models
    Del Moral, Pierre
    Jasra, Ajay
    Zhou, Yan
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2017, 19 (03) : 727 - 749
  • [9] Bayesian inference in nonparametric dynamic state-space models
    Ghosh, Anurag
    Mukhopadhyay, Soumalya
    Roy, Sandipan
    Bhattacharya, Sourabh
    STATISTICAL METHODOLOGY, 2014, 21 : 35 - 48
  • [10] Approximate Gaussian variance inference for state-space models
    Deka, Bhargob
    Goulet, James-A.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2023, 37 (11) : 2934 - 2962