Spatiotemporal blocking of the bouncy particle sampler for efficient inference in state-space models

被引:2
作者
Goldman, Jacob Vorstrup [1 ]
Singh, Sumeetpal S. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Signal Proc & Commun Lab, Cambridge, England
基金
英国工程与自然科学研究理事会;
关键词
Markov chain Monte Carlo; Piecewise-deterministic Markov process; Bouncy particle sampler; Particle Gibbs; State-space model; GIBBS; STABILITY; FILTER;
D O I
10.1007/s11222-021-10034-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a novel blocked version of the continuous-time bouncy particle sampler of Bouchard-Cote et al. (J Am Stat Assoc 113(522):855-867, 2018) which is applicable to any differentiable probability density. This alternative implementation is motivated by blocked Gibbs sampling for state-space models (Singh et al. in Biometrika 104(4):953-969, 2017) and leads to significant improvement in terms of effective sample size per second, and furthermore, allows for significant parallelization of the resulting algorithm. The new algorithms are particularly efficient for latent state inference in high-dimensional state-space models, where blocking in both space and time is necessary to avoid degeneracy of MCMC. The efficiency of our blocked bouncy particle sampler, in comparison with both the standard implementation of the bouncy particle sampler and the particle Gibbs algorithm of Andrieu et al. (J R Stat Soc Ser B Stat Methodol 72(3):269-342, 2010), is illustrated numerically for both simulated data and a challenging real-world financial dataset.
引用
收藏
页数:15
相关论文
共 41 条
  • [1] Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers
    Andrieu, Christophe
    Lee, Anthony
    Vihola, Matti
    [J]. BERNOULLI, 2018, 24 (02) : 842 - 872
  • [2] Particle Markov chain Monte Carlo methods
    Andrieu, Christophe
    Doucet, Arnaud
    Holenstein, Roman
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 269 - 342
  • [3] Bengtsson T., 2008, PROBAB STAT, V2, P316, DOI [10.1214/193940307000000518, DOI 10.1214/193940307000000518]
  • [4] Event-chain Monte Carlo algorithms for hard-sphere systems
    Bernard, Etienne P.
    Krauth, Werner
    Wilson, David B.
    [J]. PHYSICAL REVIEW E, 2009, 80 (05):
  • [5] A STABLE PARTICLE FILTER FOR A CLASS OF HIGH-DIMENSIONAL STATE-SPACE MODELS
    Beskos, Alexandros
    Crisan, Dan
    Jasra, Ajay
    Kamatani, Kengo
    Zhou, Yan
    [J]. ADVANCES IN APPLIED PROBABILITY, 2017, 49 (01) : 24 - 48
  • [6] Bierkens J., 2020, ARXIV PREPRINT ARXIV
  • [7] The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method
    Bouchard-Cote, Alexandre
    Vollmer, Sebastian J.
    Doucet, Arnaud
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (522) : 855 - 867
  • [8] Smoothing algorithms for state-space models
    Briers, Mark
    Doucet, Arnaud
    Maskell, Simon
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2010, 62 (01) : 61 - 89
  • [9] Bunch P, 2015, INT CONF ACOUST SPEE, P4115, DOI 10.1109/ICASSP.2015.7178745
  • [10] Cappe O., 2006, Inference in hidden Markov models