Existence and concentration result for a quasilinear Schrodinger equation with critical growth

被引:7
作者
Shao, Liuyang [1 ]
Chen, Haibo [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2017年 / 68卷 / 06期
关键词
Quasilinear Schrodinger equation; Variational methods; Ground state solution; Concentration-compactness principle; CONCENTRATION-COMPACTNESS PRINCIPLE; GROUND-STATE SOLUTIONS; POSITIVE SOLUTIONS; SOLITON; CALCULUS; PLASMA;
D O I
10.1007/s00033-017-0869-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the concentration of positive ground states solutions for a modified Schrodinger equation -epsilon(2)Delta u + V(x)u - epsilon(2)Delta(u(2))u = K(x)vertical bar u vertical bar(p-2)u + vertical bar u vertical bar(22*-2)u, in R-N, where 4 < p < 22*, epsilon > 0 is a parameter and 2* := 2N/N-2 (N >= 3) is the critical Sobolev exponent. We prove the existence of a positive ground state solution v(epsilon) and epsilon sufficiently small under some suitable conditions on the nonnegative functions V(x) and K(x). Moreover, v(epsilon) concentrates around a global minimum point of V as epsilon -> 0. The proof of the main result is based on minimax theorems and concentration compact theory.
引用
收藏
页数:16
相关论文
共 34 条