Single-variable formulations and isogeometric discretizations for shear deformable beams

被引:100
作者
Kiendl, J. [1 ]
Auricchio, F. [1 ,2 ]
Hughes, T. J. R. [3 ]
Reali, A. [1 ,2 ]
机构
[1] Univ Pavia, Dept Civil Engn & Architecture, I-27100 Pavia, Italy
[2] IMATI CNR, Pavia, Italy
[3] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Timoshenko beam; Shear-deformable; Locking-free; Isogeometric; Collocation; Finite elements; COLLOCATION METHODS; FINITE-ELEMENTS; TIMOSHENKO; VIBRATIONS; LOCKING; NURBS; RODS;
D O I
10.1016/j.cma.2014.11.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present numerical formulations of Timoshenko beams with only one unknown, the bending displacement, and it is shown that all variables of the beam problem can be expressed in terms of it and its derivatives. We develop strong and weak forms of the problem. The strong form of the problem involves the fourth derivative of the bending displacement, whereas the symmetric weak form involves, somewhat surprisingly, third and second derivatives. Based on these, we develop isogeometric collocation and Galerkin formulations, that are completely locking-free and involve only half the degrees of freedom compared to standard Timoshenko beam formulations. Several numerical tests are presented to demonstrate the performance of the proposed formulations. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:988 / 1004
页数:17
相关论文
共 24 条
[1]   Locking-free isogeometric collocation methods for spatial Timoshenko rods [J].
Auricchio, F. ;
da Veiga, L. Beirao ;
Kiendl, J. ;
Lovadina, C. ;
Reali, A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 263 :113-126
[2]   Isogeometric collocation for elastostatics and explicit dynamics [J].
Auricchio, F. ;
da Veiga, L. Beirao ;
Hughes, T. J. R. ;
Reali, A. ;
Sangalli, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 249 :2-14
[3]   ISOGEOMETRIC COLLOCATION METHODS [J].
Auricchio, F. ;
Da Veiga, L. Beirao ;
Hughes, T. J. R. ;
Reali, A. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (11) :2075-2107
[4]  
BOFFI D., 2013, MIXED FINITE ELEMENT, V44
[5]   Isogeometric analysis of structural vibrations [J].
Cottrell, J. A. ;
Reali, A. ;
Bazilevs, Y. ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (41-43) :5257-5296
[6]  
Cottrell J.A., 2009, Isogeometric Analysis: Towards Unification of Computer Aided Design and Finite Element Analysis
[7]   Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods [J].
da Veiga, L. Beirao ;
Lovadina, C. ;
Reali, A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 241 :38-51
[8]   Isogeometric collocation: Neumann boundary conditions and contact [J].
De Lorenzis, L. ;
Evans, J. A. ;
Hughes, T. J. R. ;
Reali, A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 284 :21-54
[9]   A hierarchic family of isogeometric shell finite elements [J].
Echter, R. ;
Oesterle, B. ;
Bischoff, M. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 254 :170-180
[10]   An Euler-Bernoulli-like finite element method for Timoshenko beams [J].
Falsone, G. ;
Settineri, D. .
MECHANICS RESEARCH COMMUNICATIONS, 2011, 38 (01) :12-16