The modified indeterminate couple stress model: Why Yang et al.'s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless

被引:32
作者
Muench, Ingo [1 ]
Neff, Patrizio [2 ]
Madeo, Angela [3 ]
Ghiba, Ionel-Dumitrel [2 ,4 ,5 ]
机构
[1] Karlsruhe Inst Technol, Inst Struct Anal, Kaiserstr 12, D-76131 Karlsruhe, Germany
[2] Univ Duisburg Essen, Fak Math, Lehrstuhl Nichtlineare Anal & Modellierung, Thea Leymann Str 9, D-45127 Essen, Germany
[3] Univ Lyon, INSA, Lab Genie Civil & Ingn Environm, Batiment Coulomb, F-69621 Villeurbanne, France
[4] Alexandru Ioan Cuza Univ, Dept Math, Blvd. Carol 1,11, Iasi 700506, Romania
[5] Romanian Acad, Octav Mayer Inst Math, Iasi Branch, Iasi 700505, Romania
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2017年 / 97卷 / 12期
关键词
Couple stress; polar continua; symmetric stress; strain gradient elasticity; hyperstresses; modified couple stress model; symmetric couple stress; consistent couple stress model; LINEAR COSSERAT ELASTICITY; CURVATURE; MEDIA;
D O I
10.1002/zamm.201600107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the reasoning in favor of a symmetric couple stress tensor in Yang et al.'s introduction of the modified couple stress theory contains a gap, but we present a reasonable physical hypothesis, implying that the couple stress tensor is traceless and may be symmetric anyway. To this aim, the origin of couple stress is discussed on the basis of certain properties of the total stress itself. In contrast to classical continuum mechanics, the balance of linear momentum and the balance of angular momentum are formulated at an infinitesimal cube considering the total stress as linear and quadratic approximation of a spatial Taylor series expansion. (C) 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1524 / 1554
页数:31
相关论文
共 48 条
[1]  
AERO EL, 1961, SOV PHYS-SOL STATE, V2, P1272
[2]   A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions [J].
Altenbach, H ;
Naumenko, K ;
Zhilin, PA .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2003, 15 (06) :539-570
[3]  
Altenbach H., 2015, Kontinuumsmechanik: Einfuhrung in die materialun-abhangigen und materialabhangigen Gleichungen, V3rd
[4]  
Altenbach H., 2004, MECH COMPOSITE STRUC
[5]  
[Anonymous], 1965, ENCY PHYS
[6]   THEORY OF STRUCTURED CONTINUA .1. GENERAL CONSIDERATION OF ANGULAR MOMENTUM AND POLARIZATION [J].
DAHLER, JS ;
SCRIVEN, LE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1963, 275 (1360) :504-+
[7]   Equilibrium of a second-gradient fluid and an elastic solid with surface stresses [J].
Eremeyev, Victor A. ;
Altenbach, Holm .
MECCANICA, 2014, 49 (11) :2635-2643
[8]   STRAIN GRADIENT PLASTICITY - THEORY AND EXPERIMENT [J].
FLECK, NA ;
MULLER, GM ;
ASHBY, MF ;
HUTCHINSON, JW .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (02) :475-487
[9]   A PHENOMENOLOGICAL THEORY FOR STRAIN GRADIENT EFFECTS IN PLASTICITY [J].
FLECK, NA ;
HUTCHINSON, JW .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1993, 41 (12) :1825-1857
[10]   Strain gradient plasticity [J].
Fleck, NA ;
Hutchinson, JW .
ADVANCES IN APPLIED MECHANICS, VOL 33, 1997, 33 :295-361