Lesion border detection in dermoscopy images using dynamic programming

被引:68
作者
Abbas, Qaisar [1 ,2 ,3 ]
Emre Celebi, M. [4 ]
Fondon Garcia, Irene [5 ]
Rashid, Muhammad [6 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Comp Sci & Technol, Wuhan 430074, Peoples R China
[2] Intelligent Control Minist Educ, Wuhan, Peoples R China
[3] Ctr Biomed imaging & Bioinformat, Key Lab Image Proc, Wuhan, Peoples R China
[4] Louisiana State Univ, Dept Comp Sci, Shreveport, LA 71105 USA
[5] Sch Engn Path Discovery SN, Dept Signal Theory & Commun, Seville 41092, Spain
[6] Huazhong Univ Sci & Technol, Dept Life Sci & Technol Biochem & Mol Biol, Wuhan 430074, Peoples R China
关键词
skin cancer; dermoscopy; artifacts removal; border detection; dynamic Programming; SEGMENTATION;
D O I
10.1111/j.1600-0846.2010.00472.x
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Background/purpose Automated border detection is an important and challenging task in the computerized analysis of dermoscopy images. However, dermoscopic images often contain artifacts such as illumination, dermoscopic gel, and outline (hair, skin lines, ruler markings, and blood vessels). As a result, there is a need for robust methods to remove artifacts and detect lesion borders in dermoscopy images. Methods This automated method consists of three main steps: (1) preprocessing, (2) edge candidate point detection, and (3) tumor outline delineation. First, algorithms to reduce artifacts were used. Second, a least-squares method (LSM) was performed to acquire edge points. Third, dynamic programming (DP) technique was used to find the optimal boundary of the lesion. Statistical measures based on dermatologist-drawn borders were utilized as ground-truth to evaluate the performance of the proposed method. Results The method is tested on a total of 240 dermoscopic images: 30 benign melanocytic, 50 malignant melanomas, 50 basal cell carcinomas, 20 Merkel cell carcinomas, 60 seborrheic keratosis, and 30 atypical naevi. We obtained mean border detection error of 8.6%, 5.04%, 9.0%, 7.02%, 2.01%, and 3.24%, respectively. Conclusions The results demonstrate that border detection combined with artifact removal increases sensitivity and specificity for segmentation of lesions in dermoscopy images.
引用
收藏
页码:91 / 100
页数:10
相关论文
共 27 条
[1]   Butterworth equations for homomorphic filtering of images [J].
Adelmann, HG .
COMPUTERS IN BIOLOGY AND MEDICINE, 1998, 28 (02) :169-181
[2]   USING DYNAMIC-PROGRAMMING FOR SOLVING VARIATIONAL-PROBLEMS IN VISION [J].
AMINI, AA ;
WEYMOUTH, TE ;
JAIN, RC .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (09) :855-867
[3]   Dermoscopy of pigmented skin lesions:: Results of a consensus meeting via the Internet [J].
Argenziano, G ;
Soyer, HP ;
Chimenti, S ;
Talamini, R ;
Corona, R ;
Sera, F ;
Binder, M ;
Cerroni, L ;
De Rosa, G ;
Ferrara, G ;
Hofmann-Wellenhof, R ;
Landthater, M ;
Menzies, SW ;
Pehamberger, H ;
Piccolo, D ;
Rabinovitz, HS ;
Schiffner, R ;
Staibano, S ;
Stolz, W ;
Bartenjev, I ;
Blum, A ;
Braun, R ;
Cabo, H ;
Carli, P ;
De Giorgi, V ;
Fleming, MG ;
Grichnik, JM ;
Grin, CM ;
Halpern, AC ;
Johr, R ;
Katz, B ;
Kenet, RO ;
Kittler, H ;
Kreusch, J ;
Malvehy, J ;
Mazzocchetti, G ;
Oliviero, M ;
Özdemir, F ;
Peris, K ;
Perotti, R ;
Perusquia, A ;
Pizzichetta, MA ;
Puig, S ;
Rao, B ;
Rubegni, P ;
Saida, T ;
Scalvenzi, M ;
Seidenari, S ;
Stanganelli, I ;
Tanaka, M .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2003, 48 (05) :679-693
[4]   Border detection in dermoscopy images using statistical region merging [J].
Celebi, M. Emre ;
Kingravi, Hassan A. ;
Iyatomi, Hitoshi ;
Aslandogan, Y. Alp ;
Stoecker, William V. ;
Moss, Randy H. ;
Malters, Joseph M. ;
Grichnik, James M. ;
Marghoob, Ashfaq A. ;
Rabinovitz, Harold S. ;
Menzies, Scott W. .
SKIN RESEARCH AND TECHNOLOGY, 2008, 14 (03) :347-353
[5]   Unsupervised border detection in dermoscopy images [J].
Celebi, M. Emre ;
Aslandogan, Y. Alp ;
Stoecker, William V. ;
Iyatomi, Hitoshi ;
Oka, Hiroshi ;
Chen, Xiaohe .
SKIN RESEARCH AND TECHNOLOGY, 2007, 13 (04) :454-462
[6]   A methodological approach to the classification of dermoscopy images [J].
Celebi, M. Emre ;
Kingravi, Hassan A. ;
Uddin, Bakhtiyar ;
Lyatornid, Hitoshi ;
Aslandogan, Y. Alp ;
Stoecker, William V. ;
Moss, Randy H. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2007, 31 (06) :362-373
[7]   Lesion border detection in dermoscopy images [J].
Celebi, M. Emre ;
Iyatomi, Hitoshi ;
Schaefer, Gerald ;
Stoecker, William V. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2009, 33 (02) :148-153
[8]   Region filling and object removal by exemplar-based image inpainting [J].
Criminisi, A ;
Pérez, P ;
Toyama, K .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (09) :1200-1212
[9]  
Criminisi A, 2003, PROC CVPR IEEE, P721
[10]   Techniques for a structural analysis of dermatoscopic imagery [J].
Fleming, MG ;
Steger, C ;
Zhang, J ;
Gao, JB ;
Cognetta, AB ;
Pollak, I ;
Dyer, CR .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 1998, 22 (05) :375-389