Testing Different Nonsmooth Formulations of the Lennard-Jones Potential in Atomic Clustering Problems

被引:1
作者
Karmitsa, Napsu [1 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku 20014, Finland
基金
芬兰科学院;
关键词
Lennard-Jones potential; Clustering problem; Molecular conformation; Nonsmooth optimisation; Global optimisation; MEMORY BUNDLE METHOD; GLOBAL OPTIMIZATION; COMPRESSION;
D O I
10.1007/s10957-016-0955-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A cluster is a group of identical molecules or atoms loosely bound by inter-atomic forces. The optimal geometry minimises the potential energy-usually modelled as the Lennard-Jones potential-of the cluster. The minimisation of the Lennard-Jones potential is a very difficult global optimisation problem with extremely many local minima. In addition to cluster problems, the Lennard-Jones potential represents an important component in many of the potential energy models used, for example, in protein folding, protein-peptide docking, and complex molecular conformation problems. In this paper, we study different modifications of the Lennard-Jones potential in order to improve the success rate of finding the global minimum of the original potential. The main interest of the paper is in nonsmooth penalised form of the Lennard-Jones potential. The preliminary numerical experiments confirm that the success rate of finding the global minimum is clearly improved when using the new formulae.
引用
收藏
页码:316 / 335
页数:20
相关论文
共 24 条
[1]  
[Anonymous], 2014, Introduction to Nonsmooth Optimization
[2]   Discrete gradient method:: Derivative-free method for nonsmooth optimization [J].
Bagirov, A. M. ;
Karasoezen, B. ;
Sezer, M. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 137 (02) :317-334
[3]   Nonsmooth Optimization Algorithm for Solving Clusterwise Linear Regression Problems [J].
Bagirov, Adil M. ;
Ugon, Julien ;
Mirzayeva, Hijran G. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 164 (03) :755-780
[4]  
Beliakov G, 2003, LECT NOTES COMPUT SC, V2659, P592
[5]   REPRESENTATIONS OF QUASI-NEWTON MATRICES AND THEIR USE IN LIMITED MEMORY METHODS [J].
BYRD, RH ;
NOCEDAL, J ;
SCHNABEL, RB .
MATHEMATICAL PROGRAMMING, 1994, 63 (02) :129-156
[6]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[7]   Effect of compression on the global optimization of atomic clusters [J].
Doye, JPK .
PHYSICAL REVIEW E, 2000, 62 (06) :8753-8761
[8]   New limited memory bundle method for large-scale nonsmooth optimization [J].
Haarala, M ;
Miettinen, K ;
Mäkelä, MM .
OPTIMIZATION METHODS & SOFTWARE, 2004, 19 (06) :673-692
[9]  
Haarala M., 2004, DISSERTATION
[10]   Globally convergent limited memory bundle method for large-scale nonsmooth optimization [J].
Haarala, Napsu ;
Miettinen, Kaisa ;
Makela, Marko M. .
MATHEMATICAL PROGRAMMING, 2007, 109 (01) :181-205