On Hamilton-Jacobi equations for neutral-type differential games

被引:3
|
作者
Gomoyunov, Mikhail [1 ,2 ]
Plaksin, Anton [1 ,2 ]
机构
[1] Russian Acad Sci, Ural Branch, NN Krasovskii Inst Math & Mech, S Kovalevskaya Str 16, Ekaterinburg 620990, Russia
[2] Ural Fed Univ, Mira Str 19, Ekaterinburg 620002, Russia
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 14期
关键词
neutral-type system; differential game; Hamilton-Jacobi equation; coinvariant derivatives; value functional; optimal strategies; SYSTEMS;
D O I
10.1016/j.ifacol.2018.07.218
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a two-person zero-sum differential game in which a motion of the dynamical system is described by neutral-type functional-differential equations in Hale's form and the quality index estimates a motion history realized up to the terminal instant of time and includes integral estimations of control realizations of the players. The formalization of the game in the class of pure positional strategies is given, the corresponding notions of the value functional and optimal control strategies of the players are defined. For the value functional, we derive a Hamilton-Jacobi type equation with coinvariant derivatives. It is proved that, if a solution of this equation satisfies certain smoothness conditions, then it coincides with the value functional. On the other hand, it is proved that, at the points of coinvariant differentiability, the value functional satisfies the derived Hamilton-Jacobi equation. Therefore, this equation can be called the Hamilton-Jacobi-Bellman-Isaacs equation for neutral-type systems. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [1] Hamilton-Jacobi Functional Equations and Differential Games for Neutral-Type Systems
    Lukoyanov, N. Yu.
    Gomoyunov, M. I.
    Plaksin, A. R.
    DOKLADY MATHEMATICS, 2017, 96 (03) : 654 - 657
  • [2] Hamilton–Jacobi functional equations and differential games for neutral-type systems
    N. Yu. Lukoyanov
    M. I. Gomoyunov
    A. R. Plaksin
    Doklady Mathematics, 2017, 96 : 654 - 657
  • [3] Viscosity Solutions of Hamilton-Jacobi Equations for Neutral-Type Systems
    Plaksin, Anton
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 88 (01):
  • [4] Minimax solutions of Hamilton-Jacobi functional equations for neutral-type systems
    Lukoyanov, N. Yu.
    Plaksin, A. R.
    DOKLADY MATHEMATICS, 2017, 96 (02) : 445 - 448
  • [5] Functional Hamilton-Jacobi type equations and differential games with hereditary information
    Lukoyanov, NY
    DOKLADY AKADEMII NAUK, 2000, 371 (04) : 457 - 461
  • [6] On the Minimax Solution of the Hamilton-Jacobi Equations for Neutral-Type Systems: the Case of an Inhomogeneous Hamiltonian
    Plaksin, A. R.
    DIFFERENTIAL EQUATIONS, 2021, 57 (11) : 1516 - 1526
  • [7] Hamilton-Jacobi Equations for Neutral-Type Systems: Inequalities for Directional Derivatives of Minimax Solutions
    Lukoyanov, Nikolai Yu
    Plaksin, Anton R.
    MINIMAX THEORY AND ITS APPLICATIONS, 2020, 5 (02): : 369 - 381
  • [8] On the Minimax Solution of the Hamilton-Jacobi Equations for Neutral-Type Systems: the Case of an Inhomogeneous Hamiltonian
    A. R. Plaksin
    Differential Equations, 2021, 57 : 1516 - 1526
  • [9] Viscosity Solutions of Hamilton–Jacobi Equations for Neutral-Type Systems
    Anton Plaksin
    Applied Mathematics & Optimization, 2023, 88
  • [10] Hamilton-Jacobi equations in evolutionary games
    Krasovskiy, N. A.
    Kryazhimskiy, A. V.
    Tarasyev, A. M.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (03): : 114 - 131