Riemannian M-spaces with homogeneous geodesics

被引:4
|
作者
Arvanitoyeorgos, Andreas [1 ]
Wang, Yu [2 ]
Zhao, Guosong [3 ]
机构
[1] Univ Patras, Dept Math, Patras 26500, Greece
[2] Sichuan Univ Sci & Engn, Zigong 643000, Peoples R China
[3] Sichuan Univ, Chengdu 610064, Sichuan, Peoples R China
关键词
Generalized flag manifold; Isotropy representation; M-space; t-roots; Homogeneous geodesic; Geodesic vector; g.o; space; MANIFOLDS;
D O I
10.1007/s10455-018-9603-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate homogeneous geodesics in a class of homogeneous spaces called M-spaces, which are defined as follows. Let G/K be a generalized flag manifold with K = C(S) = SxK(1), where S is a torus in a compact simple Lie group G and K-1 is the semisimple part of K. Then, the associated M-space is the homogeneous space G/K-1. These spaces were introduced and studied by H. C. Wang in 1954. We prove that for various classes of M-spaces the only g. o. metric is the standard metric. For other classes of M-spaces we give either necessary, or necessary and sufficient conditions, so that a G-invariant metric on G/K1 is a g. o. metric. The analysis is based on properties of the isotropy representation m = m(1) circle plus center dot center dot center dot circle plus m(s) of the flag manifold G/K [as Ad(K)-modules].
引用
收藏
页码:315 / 328
页数:14
相关论文
共 50 条
  • [31] ON SOME SPACES OF MINIMAL GEODESICS IN RIEMANNIAN SYMMETRIC SPACES
    Mare, Augustin-Liviu
    Quast, Peter
    QUARTERLY JOURNAL OF MATHEMATICS, 2012, 63 (03): : 681 - 694
  • [32] BIRETICULATE CONES AND M-SPACES
    GOULLETD.M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 272 (26): : 1707 - &
  • [33] SOME CONCRETE M-SPACES
    GOULLETDERUGY, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 273 (02): : 109 - +
  • [34] CHARACTERIZATION OF PARACOMPACT M-SPACES
    NAGATA, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (02): : A294 - A294
  • [35] DIMENSION THEORY OF M-SPACES
    PEARS, AR
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1971, 3 (JAN): : 109 - &
  • [36] On the Existence of Homogeneous Geodesics in Homogeneous Kropina Spaces
    Hosseini, M.
    Moghaddam, Hamid Reza Salimi
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (02) : 457 - 469
  • [37] EXISTENCE OF HOMOGENEOUS GEODESICS ON HOMOGENEOUS RANDERS SPACES
    Yan, Zaili
    Deng, Shaoqiang
    HOUSTON JOURNAL OF MATHEMATICS, 2018, 44 (02): : 481 - 493
  • [38] On the Existence of Homogeneous Geodesics in Homogeneous Kropina Spaces
    M. Hosseini
    Hamid Reza Salimi Moghaddam
    Bulletin of the Iranian Mathematical Society, 2020, 46 : 457 - 469
  • [39] ON A SUBCLASS OF M-SPACES . PRELIMINARY REPORT
    RISHEL, TW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (04): : 696 - &
  • [40] GENERALIZATIONS OF M-SPACES .2.
    ISIWATA, T
    PROCEEDINGS OF THE JAPAN ACADEMY, 1969, 45 (05): : 364 - &