Riemannian M-spaces with homogeneous geodesics

被引:4
|
作者
Arvanitoyeorgos, Andreas [1 ]
Wang, Yu [2 ]
Zhao, Guosong [3 ]
机构
[1] Univ Patras, Dept Math, Patras 26500, Greece
[2] Sichuan Univ Sci & Engn, Zigong 643000, Peoples R China
[3] Sichuan Univ, Chengdu 610064, Sichuan, Peoples R China
关键词
Generalized flag manifold; Isotropy representation; M-space; t-roots; Homogeneous geodesic; Geodesic vector; g.o; space; MANIFOLDS;
D O I
10.1007/s10455-018-9603-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate homogeneous geodesics in a class of homogeneous spaces called M-spaces, which are defined as follows. Let G/K be a generalized flag manifold with K = C(S) = SxK(1), where S is a torus in a compact simple Lie group G and K-1 is the semisimple part of K. Then, the associated M-space is the homogeneous space G/K-1. These spaces were introduced and studied by H. C. Wang in 1954. We prove that for various classes of M-spaces the only g. o. metric is the standard metric. For other classes of M-spaces we give either necessary, or necessary and sufficient conditions, so that a G-invariant metric on G/K1 is a g. o. metric. The analysis is based on properties of the isotropy representation m = m(1) circle plus center dot center dot center dot circle plus m(s) of the flag manifold G/K [as Ad(K)-modules].
引用
收藏
页码:315 / 328
页数:14
相关论文
共 50 条
  • [1] Riemannian M-spaces with homogeneous geodesics
    Andreas Arvanitoyeorgos
    Yu Wang
    Guosong Zhao
    Annals of Global Analysis and Geometry, 2018, 54 : 315 - 328
  • [2] Riemannian Generalized C-spaces with Homogeneous Geodesics
    Arvanitoyeorgos, Andreas
    Qin, Huajun
    Wang, Yu
    Zhao, Guosong
    FILOMAT, 2019, 33 (04) : 1117 - 1124
  • [3] Riemannian g.o. metrics in certain M-spaces
    Arvanitoyeorgos, Andreas
    Wang, Yu
    Zhao, Guosong
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 54 : 59 - 70
  • [4] Homogeneous geodesics in homogeneous Riemannian manifolds - examples
    Kowalski, O
    Nikcevic, S
    Vlasek, Z
    GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS X: DIFFERENTIAL GEOMETRY IN HONOR OF PROF S.S. CHERN, 2000, : 104 - 112
  • [5] On the existence of homogeneous geodesics in homogeneous Riemannian manifolds
    Kowalski, O
    Szenthe, J
    GEOMETRIAE DEDICATA, 2000, 81 (1-3) : 209 - 214
  • [6] On the Existence of Homogeneous Geodesics in Homogeneous Riemannian Manifolds
    Oldřich Kowalski
    János Szenthe
    Geometriae Dedicata, 2000, 81 : 209 - 214
  • [7] ON METRIZABILITY OF M-SPACES
    OKUYAMA, A
    PROCEEDINGS OF THE JAPAN ACADEMY, 1964, 40 (03): : 176 - &
  • [8] ON A THEOREM FOR M-SPACES
    SUZUKI, J
    PROCEEDINGS OF THE JAPAN ACADEMY, 1967, 43 (07): : 610 - &
  • [9] A NOTE ON M-SPACES
    SHIRAKI, T
    PROCEEDINGS OF THE JAPAN ACADEMY, 1967, 43 (09): : 873 - &
  • [10] MAPPINGS AND M-SPACES
    NAGATA, JI
    PROCEEDINGS OF THE JAPAN ACADEMY, 1969, 45 (03): : 140 - &