Particle sliding down an arbitrary concave curve in the Lagrangian formalism

被引:5
作者
Balart, Leonardo [1 ]
Belmar-Herrera, Sebastian [1 ]
机构
[1] Univ La Frontera, Fac Ingn & Ciencias, Dept Ciencias Fis, Casilla 54-D, Temuco, Chile
关键词
D O I
10.1119/10.0000037
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
We apply the method of Lagrange multipliers to the problem of a particle sliding on an arbitrary concave downward surface under the action of gravity to obtain the point where it leaves the surface.
引用
收藏
页码:982 / 985
页数:4
相关论文
共 10 条
[1]   The point of departure of a particle sliding on a curved surface [J].
Aghamohammadi, Amir .
EUROPEAN JOURNAL OF PHYSICS, 2012, 33 (05) :1111-1117
[2]  
Chow TL., 2013, Classical mechanics
[3]   Comment on "Sliding down an arbitrary curve in the presence of friction" by F. Gonzalez-Cataldo, G. Gutierrez, and J. M. Yanez, Am. J. Phys. 85(2), 108-114 (2017) [J].
del Pino, L. A. ;
Curilef, S. .
AMERICAN JOURNAL OF PHYSICS, 2018, 86 (06) :470-471
[4]  
Goldstein Herbert, 2002, CLASSICAL MECH
[5]   Sliding down an arbitrary curve in the presence of friction [J].
Gonzalez-Cataldo, Felipe ;
Gutierrez, Gonzalo ;
Yanez, Julio M. .
AMERICAN JOURNAL OF PHYSICS, 2017, 85 (02) :108-114
[6]  
Hand L. N., 1998, ANAL MECH
[7]  
Leithold Louis, 1996, CALCULUS 7
[8]  
Lemos, 2018, ANAL MECH
[9]  
Nolting Wolfgang., 2016, Theoretical Physics 2-Analytical Mechanics, V1st ed.
[10]  
Strauch D., 2009, CLASSICAL MECH INTRO