Improved Segmentation by Adversarial U-Net

被引:2
作者
Sriker, David [1 ]
Cohen, Dana [1 ]
Cahan, Noa [1 ]
Greenspan, Hayit [1 ]
机构
[1] Tel Aviv Univ, Fac Engn, Tel Aviv, Israel
来源
MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS | 2021年 / 11597卷
关键词
U-Net; Image Segmentation; Convolutional Neural Network; Computer Assisted Diagnosis; Deep Learning; FEATURES; UNET;
D O I
10.1117/12.2582130
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Medical image segmentation has a fundamental role in many computer-aided diagnosis (CAD) applications. Accurate segmentation of medical images is a key step in tracking changes over time, contouring during radiotherapy planning, and more. One of the state-of-the-art models for medical image segmentation is the U-Net that consists of an encoder-decoder based architecture. Many variations exist to the U-Net architecture. In this work, we present a new training procedure that combines U-Net with an adversarial training we refer to as Adversarial U-Net. We show that Adversarial U-Net outperformes the conventional U-Net in three versatile domains that differ in the acquisition method as well as the physical characteristics and yields smooth and improved segmentation maps.
引用
收藏
页数:6
相关论文
共 22 条
[1]   Spinal Cord Segmentation in Ultrasound Medical Imagery [J].
Benjdira, Bilel ;
Ouni, Kais ;
Al Rahhal, Mohamad M. ;
Albakr, Abdulrahman ;
Al-Habib, Amro ;
Mahrous, Emad .
APPLIED SCIENCES-BASEL, 2020, 10 (04)
[2]   Lung Segmentation in Chest Radiographs Using Anatomical Atlases With Nonrigid Registration [J].
Candemir, Sema ;
Jaeger, Stefan ;
Palaniappan, Kannappan ;
Musco, Jonathan P. ;
Singh, Rahul K. ;
Xue, Zhiyun ;
Karargyris, Alexandros ;
Antani, Sameer ;
Thoma, George ;
McDonald, Clement J. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (02) :577-590
[3]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[4]  
Goodfellow Ian, 2014, Adv. Neural Inf. Process. Syst., P2672
[5]   Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges [J].
Hesamian, Mohammad Hesam ;
Jia, Wenjing ;
He, Xiangjian ;
Kennedy, Paul .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (04) :582-596
[6]   Automatic Tuberculosis Screening Using Chest Radiographs [J].
Jaeger, Stefan ;
Karargyris, Alexandros ;
Candemir, Sema ;
Folio, Les ;
Siegelman, Jenifer ;
Callaghan, Fiona ;
Xue, Zhiyun ;
Palaniappan, Kannappan ;
Singh, Rahul K. ;
Antani, Sameer ;
Thoma, George ;
Wang, Yi-Xiang ;
Lu, Pu-Xuan ;
McDonald, Clement J. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (02) :233-245
[7]   Kvasir-SEG: A Segmented Polyp Dataset [J].
Jha, Debesh ;
Smedsrud, Pia H. ;
Riegler, Michael A. ;
Halvorsen, Pal ;
de Lange, Thomas ;
Johansen, Dag ;
Johansen, Havard D. .
MULTIMEDIA MODELING (MMM 2020), PT II, 2020, 11962 :451-462
[8]   Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation [J].
Kamnitsas, Konstantinos ;
Ledig, Christian ;
Newcombe, Virginia F. J. ;
Sirnpson, Joanna P. ;
Kane, Andrew D. ;
Menon, David K. ;
Rueckert, Daniel ;
Glocker, Ben .
MEDICAL IMAGE ANALYSIS, 2017, 36 :61-78
[9]  
Kingma DP, 2014, ADV NEUR IN, V27
[10]  
Lafferty J., 2001, ICML, P282