STRUCTURAL STABILITY OF BANG-BANG TRAJECTORIES WITH A DOUBLE SWITCHING TIME IN THE MINIMUM TIME PROBLEM

被引:6
作者
Poggiolini, Laura [1 ]
机构
[1] Univ Florence, Dipartimento Matemat & Informat Ulisse Dini, I-50139 Florence, Italy
关键词
Hamiltonian methods; bang-bang controls; sufficient second order conditions; SUFFICIENT OPTIMALITY CONDITIONS; LOCAL OPTIMALITY; EXTREMALS;
D O I
10.1137/16M1083761
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider the problem of structural stability of strong local optimizers for the minimum time problem in the case when the nominal problem has a bang-bang strongly local optimal control which exhibits a double switch.
引用
收藏
页码:3779 / 3798
页数:20
相关论文
共 18 条
[1]   Strong optimality or a bang-bang trajectory [J].
Agrachev, AA ;
Stefani, G ;
Zezza, P .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (04) :991-1014
[2]  
Felgenhauer U., 2004, International Journal of Applied Mathematics and Computer Science, V14, P447
[3]  
Felgenhauer U, 2009, CONTROL CYBERN, V38, P1305
[4]  
Hestenes MR., 1951, Pac. J. Math, V1, P525, DOI [10.2140/pjm.1951.1.525, DOI 10.2140/PJM.1951.1.525]
[5]  
Kim JHR, 2003, 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, P3281
[6]  
Malanowski K., 1994, Control and Cybernetics, V23, P61
[7]  
Malanowski K., 1993, Adv Math Sci Appl, V2, P397, DOI [10.1515/9783110883237.2557, DOI 10.1515/9783110883237.2557]
[8]  
MALANOWSKI K., 2001, DISSERTATIONES MATH, V394
[9]   Second order sufficient conditions for time-optimal bang-bang control [J].
Maurer, H ;
Osmolovskii, NP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 42 (06) :2239-2263
[10]  
Maurer H, 2003, CONTROL CYBERN, V32, P555