A New Measure for Locally t-Diagnosable Under PMC Model

被引:1
作者
Chen, Meirun [1 ]
Hsu, D. Frank [2 ]
Lin, Cheng-Kuan [3 ]
机构
[1] Xiamen Univ Technol, Sch Appl Math, Xiamen, Peoples R China
[2] Fordham Univ, Dept Comp & Informat Sci, New York, NY 10023 USA
[3] Natl Yang Ming Chiao Tung Univ, Dept Comp Sci, Hsinchu, Taiwan
来源
COMPUTING AND COMBINATORICS (COCOON 2021) | 2021年 / 13025卷
关键词
COMPOSITION NETWORKS;
D O I
10.1007/978-3-030-89543-3_26
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
PMC model is the test-based diagnosis which a vertex performs the diagnosis by testing the neighbor vertices via the edges between them. Hsu and Tan proposed two structures to diagnose a vertex. But these structures don't always exist for any vertex. Here, we propose a new testing structure to diagnose a vertex under PMC model to solve the problem above. It can fit more general networks. Let S be a set of faulty edges of the n-dimensional hypercube Q(n). Using this structure, we show that every vertex u of Q(n) is deg(Qn-S)(u)-diagnosable if delta(Q(n) - S) >= 2, deg(Qn-S)(x) + deg(Qn-S)(y) >= 5 for every two adjacent vertices x and y in Q(n) - S, and n >= 5.
引用
收藏
页码:306 / 316
页数:11
相关论文
共 23 条
[1]  
ARMSTRONG JR, 1981, IEEE T COMPUT, V30, P587, DOI 10.1109/TC.1981.1675844
[2]   Diagnosabilities of regular networks [J].
Chang, GY ;
Chang, GJ ;
Chen, GH .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2005, 16 (04) :314-323
[3]   THE MOBIUS CUBES [J].
CULL, P ;
LARSON, SM .
IEEE TRANSACTIONS ON COMPUTERS, 1995, 44 (05) :647-659
[4]  
DAHBURA AT, 1984, IEEE T COMPUT, V33, P486, DOI 10.1109/TC.1984.1676472
[5]   THE CROSSED CUBE ARCHITECTURE FOR PARALLEL COMPUTATION [J].
EFE, K .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1992, 3 (05) :513-524
[6]   PROPERTIES AND PERFORMANCE OF FOLDED HYPERCUBES [J].
ELAMAWY, A ;
LATIFI, S .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1991, 2 (01) :31-42
[7]  
Fan Jianxi, 1998, Chinese Journal of Computers, V21, P456
[8]   Diagnosability of the Mobius cubes [J].
Fan, JX .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1998, 9 (09) :923-928
[9]   A SURVEY OF THE THEORY OF HYPERCUBE GRAPHS [J].
HARARY, F ;
HAYES, JP ;
WU, HJ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1988, 15 (04) :277-289
[10]  
HILBERS PAJ, 1987, LECT NOTES COMPUT SC, V258, P152