Homomorphisms of binary Cayley graphs

被引:4
作者
Beaudou, Laurent [1 ]
Naserasr, Reza [2 ]
Tardif, Claude [3 ]
机构
[1] Univ Clermont Ferrand, CNRS, LIMOS, UMR6158, Aubiere, France
[2] Univ Paris 11, CNRS, LRI, UMR8623, F-91405 Orsay, France
[3] Coll Mil Royal Canada, Kingston, ON, Canada
关键词
Cayley graph; Homomorphism; Projective cube;
D O I
10.1016/j.disc.2015.06.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A binary Cayley graph is a Cayley graph based on a binary group. In 1992, Payan proved that any non-bipartite binary Cayley graph must contain a generalized Mycielski graph of an odd cycle, implying that such a graph cannot have chromatic number 3. We strengthen this result first by proving that any non-bipartite binary Cayley graph must contain a projective cube as a subgraph. We further conjecture that any homomorphism of a non-bipartite binary Cayley graph to a projective cube must be surjective and we prove a special case of this conjecture. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2539 / 2544
页数:6
相关论文
共 50 条
[41]   On the subgraphs of Cayley sum graphs [J].
Zhang, Jun -Yang ;
Yang, Yue-Yue .
DISCRETE MATHEMATICS, 2023, 346 (08)
[42]   PERFECT CODES IN CAYLEY GRAPHS [J].
Huang, He ;
Xia, Binzhou ;
Zhou, Sanming .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (01) :548-559
[43]   On the asymptotic enumeration of Cayley graphs [J].
Joy Morris ;
Mariapia Moscatiello ;
Pablo Spiga .
Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 :1417-1461
[44]   Fault tolerance of cayley graphs [J].
Gao, Shuhong ;
Novick, Beth .
ANNALS OF COMBINATORICS, 2007, 11 (02) :161-171
[45]   On solvable groups and Cayley graphs [J].
Dobson, Edward .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (06) :1193-1214
[46]   Channel Assignment on Cayley Graphs [J].
Bahls, Patrick .
JOURNAL OF GRAPH THEORY, 2011, 67 (03) :169-177
[47]   Cayley graphs with few automorphisms [J].
Leemann, Paul-Henry ;
de la Salle, Mikael .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (04) :1117-1146
[48]   ON WIDE DIAMETER OF CAYLEY GRAPHS [J].
Jia, Kevin E. ;
Zhang, Alicia Q. .
JOURNAL OF INTERCONNECTION NETWORKS, 2009, 10 (03) :219-231
[49]   On regular sets in Cayley graphs [J].
Wang, Xiaomeng ;
Xu, Shou-Jun ;
Zhou, Sanming .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (03) :735-759
[50]   Uniquely colorable Cayley graphs [J].
Klotz, Walter ;
Sander, Torsten .
ARS MATHEMATICA CONTEMPORANEA, 2017, 12 (01) :155-165