Fe3O4@MoS2 Core-Shell Composites: Preparation, Characterization, and Catalytic Application

被引:146
作者
Lin, Tianran [1 ]
Wang, Jing [1 ]
Guo, Liangqia [1 ]
Fu, Fengfu [1 ]
机构
[1] Fuzhou Univ, Fujian Prov Key Lab Anal & Detect Technol Food Sa, Coll Chem, Minist Educ,Key Lab Anal & Detect Food Safety, Fuzhou 350116, Peoples R China
关键词
ACTIVE EDGE SITES; CHEMICALLY EXFOLIATED MOS2; REDUCED GRAPHENE OXIDE; HYDROGEN-EVOLUTION; ULTRATHIN NANOSHEETS; DRUG-DELIVERY; H-2; EVOLUTION; NANOPARTICLES; EFFICIENT; PHOTOLUMINESCENCE;
D O I
10.1021/acs.jpcc.5b02516
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molybdenum disulfide (MoS2) has received tremendous attention due to the earth-abundant composition and high catalytic activity. However, the catalytic activity of MoS2 except electro- and photocatalytic has seldom been explored. Herein, Fe3O4@MOS2 core-shell composites were prepared for the first time by in situ growth of MoS2 nanosheets on the surfaces of Fe3O4 nanoparticles under different temperature, and the catalytic performance of the resulting composites was evaluated by using the catalytic reduction of 4-nitrophenol to 4-aminophenol. FE-SEM, TEM, XRD, and XPS analyses verified the core-shell structure with MoS2 nanosheets of defect-rich and oxygen incorporation on the surfaces of Fe3O4 nanoparticles. Fe3O4@MoS2 composites were found to exhibit a high catalytic activity for the reduction of 4-nitrophenol with the highest activity factor k = 3773 min(-1) g(-1). A plausible catalytic mechanism for the reduction of 4-nitrophenol was also proposed. This study presents an inexpensive, reusable, fast, and highly efficient catalyst for the reduction of 4-nitrophenol without noble metals.
引用
收藏
页码:13658 / 13664
页数:7
相关论文
共 61 条
[1]   XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions [J].
Baker, MA ;
Gilmore, R ;
Lenardi, C ;
Gissler, W .
APPLIED SURFACE SCIENCE, 1999, 150 (1-4) :255-262
[2]   Uninterrupted galvanic reaction for scalable and rapid synthesis of metallic and bimetallic sponges/dendrites as efficient catalysts for 4-nitrophenol reduction [J].
Barman, Barun Kumar ;
Nanda, Karuna Kar .
DALTON TRANSACTIONS, 2015, 44 (09) :4215-4222
[3]   L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries [J].
Chang, Kun ;
Chen, Weixiang .
ACS NANO, 2011, 5 (06) :4720-4728
[4]   Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear [J].
Chhowalla, M ;
Amaratunga, GAJ .
NATURE, 2000, 407 (6801) :164-167
[5]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/nchem.1589, 10.1038/NCHEM.1589]
[6]   Chemically Exfoliated MoS2 as Near-Infrared Photothermal Agents [J].
Chou, Stanley S. ;
Kaehr, Bryan ;
Kim, Jaemyung ;
Foley, Brian M. ;
De, Mrinmoy ;
Hopkins, Patrick E. ;
Huang, Jiaxing ;
Brinker, C. Jeffrey ;
Dravid, Vinayak P. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (15) :4160-4164
[7]   MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes [J].
David, Lamuel ;
Bhandavat, Romil ;
Singh, Gurpreet .
ACS NANO, 2014, 8 (02) :1759-1770
[8]   Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins [J].
Deng, Yonghui ;
Qi, Dawei ;
Deng, Chunhui ;
Zhang, Xiangmin ;
Zhao, Dongyuan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (01) :28-+
[9]   Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure: A Highly Integrated Catalyst System [J].
Deng, Yonghui ;
Cai, Yue ;
Sun, Zhenkun ;
Liu, Jia ;
Liu, Chong ;
Wei, Jing ;
Li, Wei ;
Liu, Chang ;
Wang, Yao ;
Zhao, Dongyuan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (24) :8466-8473
[10]   Photoluminescence from Chemically Exfoliated MoS2 [J].
Eda, Goki ;
Yamaguchi, Hisato ;
Voiry, Damien ;
Fujita, Takeshi ;
Chen, Mingwei ;
Chhowalla, Manish .
NANO LETTERS, 2011, 11 (12) :5111-5116