Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons

被引:46
作者
Chow, Bennett [1 ]
Lu, Peng [2 ]
Yang, Bo [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
SHRINKING; UNIQUENESS;
D O I
10.1016/j.crma.2011.11.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that recent work of Ni and Wilking (in preparation) [11] yields the result that a noncompact nonflat Ricci shrinker has at most quadratic scalar curvature decay. The examples of noncompact Kahler-Ricci shrinkers by Feldman, Ilmanen, and Knopf (2003) [7] exhibit that this result is sharp. We also prove a similar result for certain noncompact steady gradient Ricci solitons. 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1265 / 1267
页数:3
相关论文
共 15 条
[1]  
Brendle S, 2011, MATH RES LETT, V18, P531
[2]  
Cao H.D., T AM MATH S IN PRESS
[3]  
Cao HD, 2010, J DIFFER GEOM, V85, P175
[4]  
Chen BL, 2009, J DIFFER GEOM, V82, P363
[5]   Ricci solitons: the equation point of view [J].
Eminenti, Manolo ;
La Nave, Gabriele ;
Mantegazza, Carlo .
MANUSCRIPTA MATHEMATICA, 2008, 127 (03) :345-367
[6]   Complete gradient shrinking Ricci solitons have finite topological type [J].
Fang, Fu-quan ;
Man, Jian-wen ;
Zhang, Zhen-lei .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (11-12) :653-656
[7]  
Feldman M, 2003, J DIFFER GEOM, V65, P169
[8]   AREA GROWTH RATE OF THE LEVEL SURFACE OF THE POTENTIAL FUNCTION ON THE 3-DIMENSIONAL STEADY GRADIENT RICCI SOLITON [J].
Guo, Hongxin .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (06) :2093-2097
[9]  
HAMILTON R.S, 1995, SURVEYS DIFFERENTIAL, VII, P7
[10]   A Compactness Theorem for Complete Ricci Shrinkers [J].
Haslhofer, Robert ;
Mueller, Reto .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2011, 21 (05) :1091-1116