A system identification of a two-wheeled robot (TWR) using a data-driven approach from its fundamental nonlinear kinematics is investigated. The fundamental model of the TWR is implemented in a Simulink environment and tested at various input/output operating conditions. The testing outcome of TWR's fundamental dynamics generated 12 datasets. These datasets are used for system identification using simple autoregressive exogenous (ARX) and non-linear auto-regressive exogenous (NLARX) models. Initially the ARX structure is heuristically selected and estimated through a single operating condition. We conclude that the single ARX model does not satisfy TWR dynamics for all datasets in term of fitness. However, NLARX fitted the 12 estimated datasets and 2 validation datasets using sigmoid nonlinearity. The obtained results are compared with TWR's fundamental dynamics and predicted outputs of the NLARX showed more than 98% accuracy at various operating conditions.
引用
收藏
页数:9
相关论文
共 23 条
[21]
Uddin N, 2017, 2017 INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL, INFORMATICS AND ITS APPLICATIONS (IC3INA), P121, DOI 10.1109/IC3INA.2017.8251752