Proof of Polyakov conjecture for general elliptic singularities

被引:29
作者
Cantini, L [1 ]
Menotti, P
Seminara, D
机构
[1] Scuola Normale Super Pisa, I-56100 Pisa, Italy
[2] Ist Nazl Fis Nucl, Sez Pisa, I-56100 Pisa, Italy
[3] Univ Pisa, Dipartimento Fis, I-56100 Pisa, Italy
[4] Univ Florence, Dipartimento Fis, I-50125 Florence, Italy
[5] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy
关键词
D O I
10.1016/S0370-2693(01)00998-4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A proof is given of Polyakov conjecture about the accessory parameters of the SU(1, 1) Riemann-Hilbert problem for general elliptic singularities on the Riemann sphere. Its relevance to (2 + 1)-dimensional gravity is stressed. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:203 / 209
页数:7
相关论文
共 29 条
[1]  
[Anonymous], 1898, J MATH PURES APPL
[2]   NONPERTURBATIVE PARTICLE DYNAMICS IN (2+1)-GRAVITY [J].
BELLINI, A ;
CIAFALONI, M ;
VALTANCOLI, P .
PHYSICS LETTERS B, 1995, 357 (04) :532-538
[3]   Solving the N-body problem in (2+1) gravity [J].
Bellini, A ;
Ciafaloni, M ;
Valtancoli, P .
NUCLEAR PHYSICS B, 1996, 462 (2-3) :453-490
[4]  
Bilal A., 1988, Journal of Geometry and Physics, V5, P277, DOI 10.1016/0393-0440(88)90007-1
[5]   EXACT QUANTUM 3-POINT FUNCTION OF LIOUVILLE HIGHEST WEIGHT STATES [J].
BILAL, A ;
GERVAIS, JL .
NUCLEAR PHYSICS B, 1988, 305 (01) :33-68
[6]   Hamiltonian structure and quantization of (2+1)-dimensional gravity coupled to particles [J].
Cantini, L ;
Menotti, P ;
Seminara, D .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (12) :2253-2275
[7]  
D'Angelo J.P., 1993, STUDIES ADV MATH
[8]  
Gunning RC, 1965, ANAL FUNCTIONS SEVER
[9]   UNIFORMIZATION OF THE TWICE-PUNCTURED DISK - PROBLEMS OF CONFLUENCE [J].
HEMPEL, JA ;
SMITH, SJ .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1989, 39 (03) :369-387
[10]   ON THE UNIFORMIZATION OF THE N-PUNCTURED SPHERE [J].
HEMPEL, JA .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :97-115