Automatic linear correction of rounding errors

被引:9
作者
Langlois, P
机构
[1] Ecole Normale Super Lyon, Lab Informat Parallelisme, F-69364 Lyon, France
[2] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
关键词
automatic error analysis; rounding error; floating point arithmetic;
D O I
10.1023/A:1021919329342
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A new automatic method to correct the first-order effect of floating point rounding errors on the result of a numerical algorithm is presented. A correcting term and a confidence threshold are computed using algorithmic differentiation, computation of elementary rounding error and running error analysis. Algorithms for which the accuracy of the result is not affected by higher order terms are identified. The correction is applied to the final result or to sensitive intermediate results to improve the accuracy of the computed result and/or the stability of the algorithm.
引用
收藏
页码:515 / 539
页数:25
相关论文
共 24 条
[1]  
Bailey D.H., FORTRAN 90 DOUBLE DO
[2]   THE COMPLEXITY OF PARTIAL DERIVATIVES [J].
BAUR, W ;
STRASSEN, V .
THEORETICAL COMPUTER SCIENCE, 1983, 22 (03) :317-330
[3]  
BRACONNIER T, 2000, P 3 INT C AUT DIFF S
[4]  
BRIGGS K, 1998, DOUBLEDOUBLE FLOATIN
[5]  
CORLISS G, 2000, RR3967 INRIA
[6]  
Dahlquist G., 1974, NUMERICAL METHODS
[7]   FLOATING-POINT TECHNIQUE FOR EXTENDING AVAILABLE PRECISION [J].
DEKKER, TJ .
NUMERISCHE MATHEMATIK, 1971, 18 (03) :224-+
[8]  
Griewank A., 2000, EVALUATING DERIVATIV
[9]  
Higham N. J., 1996, ACCURACY STABILITY N
[10]  
IRI M, 1991, SIAM PROC S, P3