Ancilla-Free Quantum Error Correction Codes for Quantum Metrology

被引:60
|
作者
Layden, David [1 ,2 ]
Zhou, Sisi [3 ,4 ]
Cappellaro, Paola [1 ,2 ]
Jiang, Liang [3 ,4 ]
机构
[1] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[2] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
[3] Yale Univ, Dept Appl Phys & Phys, New Haven, CT 06511 USA
[4] Yale Univ, Yale Quantum Inst, New Haven, CT 06511 USA
基金
美国国家科学基金会;
关键词
DECOHERENCE;
D O I
10.1103/PhysRevLett.122.040502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum error correction has recently emerged as a tool to enhance quantum sensing under Markovian noise. It works by correcting errors in a sensor while letting a signal imprint on the logical state. This approach typically requires a specialized error-correcting code, as most existing codes correct away both the dominant errors and the signal. To date, however, few such specialized codes are known, among which most require noiseless, controllable ancillas. We show here that such ancillas are not needed when the signal Hamiltonian and the error operators commute, a common limiting type of decoherence in quantum sensors. We give a semidefinite program for finding optimal ancilla-free sensing codes in general, as well as closed-form codes for two common sensing scenarios: qubits undergoing dephasing, and a lossy bosonic mode. Finally, we analyze the sensitivity enhancement offered by the qubit code under arbitrary spatial noise correlations, beyond the ideal limit of orthogonal signal and noise operators.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Quantum Metrology Enhanced by Repetitive Quantum Error Correction
    Unden, Thomas
    Balasubramanian, Priya
    Louzon, Daniel
    Vinkler, Yuval
    Plenio, Martin B.
    Markham, Matthew
    Twitchen, Daniel
    Stacey, Alastair
    Lovchinsky, Igor
    Sushkov, Alexander O.
    Lukin, Mikhail D.
    Retzker, Alex
    Naydenov, Boris
    McGuinness, Liam P.
    Jelezko, Fedor
    PHYSICAL REVIEW LETTERS, 2016, 116 (23)
  • [12] Improved Quantum Metrology Using Quantum Error Correction
    Duer, W.
    Skotiniotis, M.
    Froewis, F.
    Kraus, B.
    PHYSICAL REVIEW LETTERS, 2014, 112 (08)
  • [13] Realizing a class of stabilizer quantum error correction codes using a single ancilla and circular connectivity
    Antipov, A., V
    Kiktenko, E. O.
    Fedorov, A. K.
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [14] Security trade-offs in ancilla-free quantum bit commitment in the presence of superselection rules
    DiVincenzo, DP
    Smolin, JA
    Terhal, BM
    NEW JOURNAL OF PHYSICS, 2004, 6 : 1 - 9
  • [15] Practical limits of error correction for quantum metrology
    Shettell, Nathan
    Munro, William J.
    Markham, Damian
    Nemoto, Kae
    NEW JOURNAL OF PHYSICS, 2021, 23 (04):
  • [16] Quantum convolutional error correction codes
    Chau, HF
    QUANTUM COMPUTING AND QUANTUM COMMUNICATIONS, 1999, 1509 : 314 - 324
  • [17] Quantum multiplexing for error correction codes
    Lo Piparo, Nicolo
    Hanks, Michael
    Gravel, Claude
    Munro, William J.
    Nemoto, Kae
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2020,
  • [18] Achieving the Heisenberg limit in quantum metrology using quantum error correction
    Zhou, Sisi
    Zhang, Mengzhen
    Preskill, John
    Jiang, Liang
    NATURE COMMUNICATIONS, 2018, 9
  • [19] Quantum-error-correction-assisted quantum metrology without entanglement
    Tan, Kok Chuan
    Omkar, S.
    Jeong, Hyunseok
    PHYSICAL REVIEW A, 2019, 100 (02)
  • [20] Achieving the Heisenberg limit in quantum metrology using quantum error correction
    Sisi Zhou
    Mengzhen Zhang
    John Preskill
    Liang Jiang
    Nature Communications, 9