Dynamic effects of quenched disorder on domain wall motion in magnetic nanowires

被引:5
作者
He, Y. Y. [1 ]
Zheng, B. [1 ]
Zhou, N. J. [2 ]
机构
[1] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
[2] Hangzhou Normal Univ, Dept Phys, Hangzhou 310036, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSITION;
D O I
10.1103/PhysRevB.94.134302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The domain wall dynamics in magnetic nanowires is numerically studied with the Landau-Lifshitz-Gilbert equation. Below the Walker breakdown threshold, the domain wall presents a stable propagation, while above the threshold where the retrograde mode dominates, the oscillation period is controlled by the external field and anisotropy. More importantly, the dynamic effects of quenched disorder on the domain wall motion are explored. A continuous pinning-depinning phase transition is detected. The dynamic scaling form is analyzed with the data collapse of the domain wall velocity, and both the static and dynamic critical exponents are extracted.
引用
收藏
页数:7
相关论文
共 49 条
  • [1] Magnetic domain-wall logic
    Allwood, DA
    Xiong, G
    Faulkner, CC
    Atkinson, D
    Petit, D
    Cowburn, RP
    [J]. SCIENCE, 2005, 309 (5741) : 1688 - 1692
  • [2] Domain wall motion in Tb/Co multilayer wires with a large domain wall depinning field
    Bang, Do
    Awano, Hiroyuki
    [J]. JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)
  • [3] Dependence of domain wall pinning potential landscapes on domain wall chirality and pinning site geometry in planar nanowires
    Bogart, L. K.
    Atkinson, D.
    O'Shea, K.
    McGrouther, D.
    McVitie, S.
    [J]. PHYSICAL REVIEW B, 2009, 79 (05):
  • [4] Depinning of stiff directed lines in random media
    Boltz, Horst-Holger
    Kierfeld, Jan
    [J]. PHYSICAL REVIEW E, 2014, 90 (01):
  • [5] Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons
    Braun, Hans-Benjamin
    [J]. ADVANCES IN PHYSICS, 2012, 61 (01) : 1 - 116
  • [6] Thermal rounding of the depinning transition
    Bustingorry, S.
    Kolton, A. B.
    Giamarchi, T.
    [J]. EPL, 2008, 81 (02)
  • [7] Hamiltonian equation of motion and depinning phase transition in two-dimensional magnets
    Dong, R. H.
    Zheng, B.
    Zhou, N. J.
    [J]. EPL, 2012, 99 (05)
  • [8] Nonsteady relaxation and critical exponents at the depinning transition
    Ferrero, E. E.
    Bustingorry, S.
    Kolton, A. B.
    [J]. PHYSICAL REVIEW E, 2013, 87 (03):
  • [9] Critical behavior of plastic depinning of vortex lattices in two dimensions: Molecular dynamics simulations
    Fily, Y.
    Olive, E.
    Di Scala, N.
    Soret, J. C.
    [J]. PHYSICAL REVIEW B, 2010, 82 (13)
  • [10] Domain wall motion in nanowires using moving grids (invited)
    Forster, H
    Schrefl, T
    Suess, D
    Scholz, W
    Tsiantos, V
    Dittrich, R
    Fidler, J
    [J]. JOURNAL OF APPLIED PHYSICS, 2002, 91 (10) : 6914 - 6919