Path Integral Estimates of the Quantum Fluctuations of the Relative Soliton-Soliton Velocity in a Gross-Pitaevskii Breather

被引:3
作者
Datta, Sumita [1 ]
Dunjko, Vanja [2 ]
Olshanii, Maxim [2 ]
机构
[1] Alliance Univ, Alliance Sch Appl Math, Bengaluru 562106, Karnataka, India
[2] Univ Massachusetts, Dept Phys, Boston, MA 02125 USA
关键词
solitons; breathers; quantum fluctuations; Feynman-Kac path integration; Gross-Pitaevskii breather;
D O I
10.3390/physics4010002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the quantum fluctuations of the relative velocity of constituent solitons in a Gross-Pitaevskii breather are studied. The breather is confined in a weak harmonic trap. These fluctuations are monitored, indirectly, using a two-body correlation function measured at a quarter of the harmonic period after the breather creation. The results of an ab initio quantum Monte Carlo calculation, based on the Feynman-Kac path integration method, are compared with the analytical predictions using the recently suggested approach within the Bogoliubov approximation, and a good agreement is obtained.
引用
收藏
页码:12 / 20
页数:9
相关论文
共 25 条
[1]  
BILLINGSLEY P, 1968, CONVERGENCE PROBABIL
[2]   DEVELOPMENT OF A PURE DIFFUSION QUANTUM MONTE-CARLO METHOD USING A FULL GENERALIZED FEYNMAN-KAC FORMULA .1. FORMALISM [J].
CAFFAREL, M ;
CLAVERIE, P .
JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (02) :1088-1099
[3]   Feynman-Kac path-integral calculations with high-quality trial wave functions [J].
Datta, S ;
Fry, JL ;
Fazleev, NG ;
Alexander, SA ;
Coldwell, RL .
PHYSICAL REVIEW A, 2000, 61 (03) :3
[4]  
Datta S., 1996, THESIS U TEXAS ARLIN
[5]   Excitation Modes of Bright Matter-Wave Solitons [J].
Di Carli, Andrea ;
Colquhoun, Craig D. ;
Henderson, Grant ;
Flannigan, Stuart ;
Oppo, Gian-Luca ;
Daley, Andrew J. ;
Kuhr, Stefan ;
Haller, Elmar .
PHYSICAL REVIEW LETTERS, 2019, 123 (12)
[6]   A SAMPLING METHOD FOR DETERMINING THE LOWEST EIGENVALUE AND THE PRINCIPAL EIGENFUNCTION OF SCHRODINGERS EQUATION [J].
DONSKER, MD ;
KAC, M .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1950, 44 (05) :551-557
[7]  
Feynman R. P., 1965, Quantum Mechanics and Path Integrals
[8]   Critical number of atoms for attractive Bose-Einstein condensates with cylindrically symmetrical traps [J].
Gammal, A ;
Frederico, T ;
Tomio, L .
PHYSICAL REVIEW A, 2001, 64 (05) :556021-556024
[9]   THEORY OF RANDOM EVOLUTIONS WITH APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS [J].
GRIEGO, R ;
HERSH, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 156 (MAY) :405-&
[10]  
Kac M., 1951, P 2 BERKELEY S MATH, P189