Increasing protein stability using a rational approach combining sequence homology and structural alignment: Stabilizing the WW domain

被引:46
作者
Jiang, X
Kowalski, J
Kelly, JW
机构
[1] Scripps Res Inst, Dept Chem, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
关键词
WW domain; protein design; homology-based; sequence alignment; structure comparison; protein stability; side-chain interactions;
D O I
10.1110/ps.640101
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study shows that a combination of sequence homology and structural information can be used to increase the stability of the WW domain by 2.5 kcal mol(-1) and increase the T-m by 28 degreesC, Previous homology-based protein design efforts typically investigate positions with low sequence identity, whereas this study focuses on semi-conserved core residues and proximal residues, exploring their role(s) in mediating stabilizing interactions on the basis of structural considerations. The A20R and L30Y mutations allow increased hydrophobic interactions because of complimentary surfaces and an electrostatic interaction with a third residue adjacent to the ligand-binding hydrophobic cluster, increasing stability significantly beyond what additivity would predict for the single mutations. The D34T mutation situated in a pi -turn possibly disengages Asn31, allowing it to make up to three hydrogen bonds with the backbone in strand 1 and loop 2. The synergistic mutations A20R/L30Y in combination with the remotely located mutation D34T add together to create a hYap WW domain that is significantly more stable than any of the protein structures on which the design was based (Pin and FBP28 WW domains).
引用
收藏
页码:1454 / 1465
页数:12
相关论文
共 60 条
[1]   THERMODYNAMIC ANALYSIS OF THE FOLDING OF THE STREPTOCOCCAL PROTEIN-G IGG-BINDING DOMAINS B1 AND B2 - WHY SMALL PROTEINS TEND TO HAVE HIGH DENATURATION TEMPERATURES [J].
ALEXANDER, P ;
FAHNESTOCK, S ;
LEE, T ;
ORBAN, J ;
BRYAN, P .
BIOCHEMISTRY, 1992, 31 (14) :3597-3603
[2]  
Babbitt PC, 2001, ADV PROTEIN CHEM, V55, P1, DOI 10.1016/S0065-3233(01)55001-9
[3]   A surprising simplicity to protein folding [J].
Baker, D .
NATURE, 2000, 405 (6782) :39-42
[4]   DETERMINANTS OF A PROTEIN FOLD - UNIQUE FEATURES OF THE GLOBIN AMINO-ACID-SEQUENCES [J].
BASHFORD, D ;
CHOTHIA, C ;
LESK, AM .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 196 (01) :199-216
[5]   FBP WW domains and the Abl SH3 domain bind to a specific class of proline-rich ligands [J].
Bedford, MT ;
Chan, DC ;
Leder, P .
EMBO JOURNAL, 1997, 16 (09) :2376-2383
[6]   Structural determinants in the sequences of immunoglobulin variable domain [J].
Chothia, C ;
Gelfand, I ;
Kister, A .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 278 (02) :457-479
[7]   SOLVENT-ACCESSIBLE SURFACES OF PROTEINS AND NUCLEIC-ACIDS [J].
CONNOLLY, ML .
SCIENCE, 1983, 221 (4612) :709-713
[8]   Mapping the transition state of the WW domain β-sheet [J].
Crane, JC ;
Koepf, EK ;
Kelly, JW ;
Gruebele, M .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 298 (02) :283-292
[9]   De novo protein design: Towards fully automated sequence selection [J].
Dahiyat, BI ;
Sarisky, CA ;
Mayo, SL .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 273 (04) :789-796
[10]   Evolution of binding affinity in a WW domain probed by phage display [J].
Dalby, PA ;
Hoess, RH ;
DeGrado, WF .
PROTEIN SCIENCE, 2000, 9 (12) :2366-2376