High capacity nanocomposite Fe3O4/Fe anodes for Li-ion batteries

被引:41
作者
Luebke, Mechthild [1 ]
Makwana, Neel M. [1 ]
Gruar, Robert [1 ]
Tighe, Chris [4 ]
Brett, Dan [2 ]
Shearing, Paul [2 ]
Liu, Zhaolin [3 ]
Darr, Jawwad A. [1 ]
机构
[1] UCL, Dept Chem, London WC1H 0AJ, England
[2] UCL, Dept Chem Engn, London WC1E 7JE, England
[3] ASTAR, Inst Mat Res & Engn, Singapore 117602, Singapore
[4] Univ London Imperial Coll Sci Technol & Med, Fac Engn, Dept Chem Engn, South Kensington SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Iron oxide; Iron metal; Continuous hydrothermal flow synthesis; Lithium-ion battery; Anode; ELECTROCHEMICAL PERFORMANCE; HYDROTHERMAL SYNTHESIS; SUPERCRITICAL WATER; NANOPARTICLES; MICROSPHERES; MANUFACTURE;
D O I
10.1016/j.jpowsour.2015.04.100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High capacity, stable Fe3O4/Fe nanocomposites for Li-ion battery anodes were manufactured via heattreating Fe3O4-C (amorphous) nanoparticles that were made via a continuous hydrothermal flow synthesis (CHFS) reactor. Compared to analogous Fe3O4 nanoparticles, the Fe3O4/Fe nanocomposite anodes (vs. Li/Li+), displayed a high specific capacity of ca. 390 mAh g(-1), after 50 cycles, at a modest current rate of 200 mA g(-1) (at the highest Fe metal content). The performance of the Fe3O4/Fe materials at higher current rates was also excellent (ca. 260 mAh g(-1), at the highest current rate of 2000 mA g(-1)), which confirms that the presence of Fe metallic particles can significantly improve cycling stability of Li-ion battery anodes by retaining structural metal oxide integrity. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 107
页数:6
相关论文
共 24 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   An investigation of the electrochemical delithiation process of carbon coated α-Fe2O3 nanoparticles [J].
Brandt, Adrian ;
Winter, Florian ;
Klamor, Sebastian ;
Berkemeier, Frank ;
Rana, Jatinkumar ;
Poettgen, Rainer ;
Balducci, Andrea .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (37) :11229-11236
[3]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[4]   The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water [J].
Cabañas, A ;
Poliakoff, M .
JOURNAL OF MATERIALS CHEMISTRY, 2001, 11 (05) :1408-1416
[5]   Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries [J].
Chen, Huixin ;
Xiao, Ying ;
Wang, Lin ;
Yang, Yong .
JOURNAL OF POWER SOURCES, 2011, 196 (16) :6657-6662
[6]   Modelling and simulation of continuous hydrothermal flow synthesis process for nano-materials manufacture [J].
Chen, Man ;
Ma, Cai Y. ;
Mahmud, Tariq ;
Darr, Jawwad A. ;
Wang, Xue Z. .
JOURNAL OF SUPERCRITICAL FLUIDS, 2011, 59 :131-139
[7]   New directions in inorganic and metal-organic coordination chemistry in supercritical fluids [J].
Darr, JA ;
Poliakoff, M .
CHEMICAL REVIEWS, 1999, 99 (02) :495-541
[8]   Scaling-up a Confined Jet Reactor for the Continuous Hydrothermal Manufacture of Nanomaterials [J].
Gruar, Robert I. ;
Tighe, Christopher J. ;
Darr, Jawwad A. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (15) :5270-5281
[9]   Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium-ion battery [J].
He, Ben-Lin ;
Dong, Bin ;
Li, Hu-Lin .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (03) :425-430
[10]   The Scherrer equation versus the 'Debye-Scherrer equation' [J].
Holzwarth, Uwe ;
Gibson, Neil .
NATURE NANOTECHNOLOGY, 2011, 6 (09) :534-534