The Reachability Problem for Two-Dimensional Vector Addition Systems with States

被引:4
作者
Blondin, Michael [1 ]
Englert, Matthias [2 ]
Finkel, Alain [3 ]
Goeller, Stefan [4 ]
Haase, Christoph [5 ]
Lazic, Ranko [2 ]
Mckenzie, Pierre [6 ]
Totzke, Patrick [7 ]
机构
[1] Univ Sherbrooke, 2500 Blvd Univ, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Warwick, Coventry CV4 7AL, W Midlands, England
[3] Univ Paris Saclay, Lab LMF, IUF, CNRS,ENS Paris Saclay, 4 Ave Sci,CS 30008, F-91192 Gif Sur Yvette, France
[4] Univ Kassel, Wilhelmshoher Allee 73, D-34121 Kassel, Germany
[5] Univ Oxford, Parks Rd, Oxford OX1 3QD, England
[6] Univ Montreal, CP 6128 Succ Ctr Vile, Montreal, PQ H3C 3J7, Canada
[7] Univ Liverpool, Dept Comp Sci, Ashton Bldg,Ashton St, Liverpool L69 3BX, Merseyside, England
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Vector addition systems with states; Petri nets; semi-linear sets; linear path schemes; reachability; BOUNDS;
D O I
10.1145/3464794
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We prove that the reachability problem for two-dimensional vector addition systems with states is NL-complete or PSPACE-complete, depending on whether the numbers in the input are encoded in unary or binary. As a key underlying technical result, we show that, if a configuration is reachable, then there exists a witnessing path whose sequence of transitions is contained in a bounded language defined by a regular expression of pseudo-polynomially bounded length. This, in turn, enables us to prove that the lengths of minimal reachability witnesses are pseudo-polynomially bounded.
引用
收藏
页数:41
相关论文
共 42 条
  • [1] PERSISTENCE RESULTS FOR CHEMICAL REACTION NETWORKS WITH TIME-DEPENDENT KINETICS AND NO GLOBAL CONSERVATION LAWS
    Angeli, David
    De Leenheer, Patrick
    Sontag, Eduardo D.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (01) : 128 - 146
  • [2] Petri nets for modelling metabolic pathways: a survey
    Baldan, Paolo
    Cocco, Nicoletta
    Marin, Andrea
    Simeoni, Marta
    [J]. NATURAL COMPUTING, 2010, 9 (04) : 955 - 989
  • [3] Reachability in Two-Dimensional Vector Addition Systems with States is PSPACE-complete
    Blondin, Michael
    Finkel, Alain
    Goeller, Stefan
    Haase, Christoph
    McKenzie, Pierre
    [J]. 2015 30TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2015, : 32 - 43
  • [4] Böhm S, 2013, STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, P131
  • [5] Long-Run Average Behaviour of Probabilistic Vector Addition Systems
    Brazdil, Tomas
    Kiefer, Stefan
    Kucera, Antonin
    Novotny, Petr
    [J]. 2015 30TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2015, : 44 - 55
  • [6] Cardoza E., 1976, STOC 1976: Proceedings of the 8th annual ACM Symposium on Theory of Computing, P50, DOI DOI 10.1145/800113.803630
  • [7] SHORTEST PATHS IN ONE-COUNTER SYSTEMS
    Chistikov, Dmitry
    Czerwinski, Wojciech
    Hofman, Piotr
    Pilipczuk, Michal
    Wehar, Michael
    [J]. LOGICAL METHODS IN COMPUTER SCIENCE, 2019, 15 (01) : 19:1 - 19:28
  • [8] The Reachability Problem for Petri Nets Is Not Elementary
    Czerwinski, Wojciech
    Lasota, Slawomir
    Lazic, Ranko
    Leroux, Jerome
    Mazowiecki, Filip
    [J]. PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 24 - 33
  • [9] Czerwinski W, 2017, IEEE S LOG
  • [10] Czerwinski Wojciech, 2019, SCHLOSS DAGSTUHL LEI, V138, DOI [10. 4230/LIPIcs.MFCS.2019.62, DOI 10.4230/LIPICS.MFCS.2019.62]