Resonant terahertz detection using graphene plasmons

被引:263
作者
Bandurin, Denis A. [1 ]
Svintsov, Dmitry [2 ]
Gayduchenko, Igor [2 ,3 ]
Xu, Shuigang G. [1 ,4 ]
Principi, Alessandro [1 ]
Moskotin, Maxim [2 ,3 ]
Tretyakov, Ivan [3 ]
Yagodkin, Denis [2 ,3 ]
Zhukov, Sergey [2 ]
Taniguchi, Takashi [5 ]
Watanabe, Kenji [5 ]
Grigorieva, Irina V. [1 ]
Polini, Marco [1 ,6 ]
Goltsman, Gregory N. [3 ]
Geim, Andre K. [1 ,4 ]
Fedorov, Georgy [2 ,3 ]
机构
[1] Univ Manchester, Sch Phys, Oxford Rd, Oxford, England
[2] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[3] Moscow State Univ Educ, Dept Phys, Moscow 119435, Russia
[4] Univ Manchester, Natl Graphene Inst, Manchester M13 9PL, Lancs, England
[5] Natl Inst Mat Sci, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[6] Ist Italiano Tecnol, Graphene Labs, Via Morego 30, I-16163 Genoa, Italy
基金
俄罗斯科学基金会; 英国工程与自然科学研究理事会; 欧盟地平线“2020”; 欧洲研究理事会;
关键词
OSCILLATIONS; RADIATION; WAVES;
D O I
10.1038/s41467-018-07848-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically tunable plasmons. Here we demonstrate plasmon-assisted resonant detection of terahertz radiation by antenna-coupled graphene transistors that act as both plasmonic Fabry-Perot cavities and rectifying elements. By varying the plasmon velocity using gate voltage, we tune our detectors between multiple resonant modes and exploit this functionality to measure plasmon wavelength and lifetime in bilayer graphene as well as to probe collective modes in its moire minibands. Our devices offer a convenient tool for further plasmonic research that is often exceedingly difficult under non-ambient conditions (e.g. cryogenic temperatures) and promise a viable route for various photonic applications.
引用
收藏
页数:8
相关论文
共 48 条
[1]  
Alonso-González P, 2017, NAT NANOTECHNOL, V12, P31, DOI [10.1038/nnano.2016.185, 10.1038/NNANO.2016.185]
[2]   Terahertz Detection and Imaging Using Graphene Ballistic Rectifiers [J].
Auton, Gregory ;
But, Dmytro B. ;
Zhang, Jiawei ;
Hill, Ernie ;
Coquillat, Dominique ;
Consejo, Christophe ;
Nouvel, Philippe ;
Knap, Wojciech ;
Varani, Luca ;
Teppe, Frederic ;
Torres, Jeremie ;
Song, Aimin .
NANO LETTERS, 2017, 17 (11) :7015-7020
[3]   Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors [J].
Bandurin, D. A. ;
Gayduchenko, I. ;
Cao, Y. ;
Moskotin, M. ;
Principi, A. ;
Grigorieva, I. V. ;
Goltsman, G. ;
Fedorov, G. ;
Svintsov, D. .
APPLIED PHYSICS LETTERS, 2018, 112 (14)
[4]   Fluidity onset in graphene [J].
Bandurin, Denis A. ;
Shytov, Andrey V. ;
Levitov, Leonid S. ;
Kumar, Roshan Krishna ;
Berdyugin, Alexey I. ;
Ben Shalom, Moshe ;
Grigorieva, Irina V. ;
Geim, Andre K. ;
Falkovich, Gregory .
NATURE COMMUNICATIONS, 2018, 9
[5]  
Berdyugin A. I., 2018, MEASURING HALL VISCO
[6]  
Cai X, 2014, NAT NANOTECHNOL, V9, P814, DOI [10.1038/nnano.2014.182, 10.1038/NNANO.2014.182]
[7]  
Chaplik A. V., 1972, Soviet Physics - JETP, V35, P395
[8]   Optical nano-imaging of gate-tunable graphene plasmons [J].
Chen, Jianing ;
Badioli, Michela ;
Alonso-Gonzalez, Pablo ;
Thongrattanasiri, Sukosin ;
Huth, Florian ;
Osmond, Johann ;
Spasenovic, Marko ;
Centeno, Alba ;
Pesquera, Amaia ;
Godignon, Philippe ;
Zurutuza Elorza, Amaia ;
Camara, Nicolas ;
Javier Garcia de Abajo, F. ;
Hillenbrand, Rainer ;
Koppens, Frank H. L. .
NATURE, 2012, 487 (7405) :77-81
[9]  
Daryoosh S., 2013, HDB TERAHERTZ TECHNO
[10]   The 2017 terahertz science and technology roadmap [J].
Dhillon, S. S. ;
Vitiello, M. S. ;
Linfield, E. H. ;
Davies, A. G. ;
Hoffmann, Matthias C. ;
Booske, John ;
Paoloni, Claudio ;
Gensch, M. ;
Weightman, P. ;
Williams, G. P. ;
Castro-Camus, E. ;
Cumming, D. R. S. ;
Simoens, F. ;
Escorcia-Carranza, I. ;
Grant, J. ;
Lucyszyn, Stepan ;
Kuwata-Gonokami, Makoto ;
Konishi, Kuniaki ;
Koch, Martin ;
Schmuttenmaer, Charles A. ;
Cocker, Tyler L. ;
Huber, Rupert ;
Markelz, A. G. ;
Taylor, Z. D. ;
Wallace, Vincent P. ;
Zeitler, J. Axel ;
Sibik, Juraj ;
Korter, Timothy M. ;
Ellison, B. ;
Rea, S. ;
Goldsmith, P. ;
Cooper, Ken B. ;
Appleby, Roger ;
Pardo, D. ;
Huggard, P. G. ;
Krozer, V. ;
Shams, Haymen ;
Fice, Martyn ;
Renaud, Cyril ;
Seeds, Alwyn ;
Stoehr, Andreas ;
Naftaly, Mira ;
Ridler, Nick ;
Clarke, Roland ;
Cunningham, John E. ;
Johnston, Michael B. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (04)