Exfoliated Triazine-Based Covalent Organic Nanosheets with Multielectron Redox for High-Performance Lithium Organic Batteries

被引:203
|
作者
Lei, Zhendong [1 ,2 ]
Chen, Xiudong [1 ,3 ]
Sun, Weiwei [1 ,4 ]
Zhang, Yong [2 ]
Wang, Yong [1 ,4 ]
机构
[1] Shanghai Univ, Dept Chem Engn, Sch Environm & Chem Engn, 99 Shangda Rd, Shanghai 200444, Peoples R China
[2] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, Singapore 117583, Singapore
[3] Qiannan Normal Coll Nationalities, Sch Chem & Chem Engn, Duyun 558000, Guizhou, Peoples R China
[4] Univ Wollongong, Inst Superconducting & Elect Mat, North Wollongong, NSW 2500, Australia
基金
中国国家自然科学基金;
关键词
covalent-organic nanosheets; exfoliation; lithium-storage mechanism; organic electrodes; FRAMEWORK DERIVATION; POLYMER NETWORKS; LONG-LIFE; ION; ANODE; CRYSTALLINE; CAPACITY; CATHODE; STORAGE; THERMOCHEMISTRY;
D O I
10.1002/aenm.201801010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of the next-generation lithium ion battery requires environmental-friendly electrode materials with long cycle life and high energy density. Organic compounds are a promising potential source of electrode materials for lithium ion batteries due to their advantages of chemical richness at the molecular level, cost benefit, and environmental friendliness, but they suffer from low capacity and dissatisfactory cycle life mainly due to hydrophobic dissolution in organic electrolytes and poor electronic conductivity. In this work, two types of triazine-based covalent organic nanosheets (CONs) are exfoliated and composited with carbon nanotubes. The thin-layered 2D structure for the exfoliated CONs can activate more functional groups for lithium storage and boost the utilization efficiency of redox sites compared to its bulk counterpart. Large reversible capacities of above 1000 mAh g(-1) can be achieved after 250 cycles, which is comparable to high-capacity inorganic electrodes. Moreover, the lithium-storage mechanism is determined to be an intriguing 11 and 16 electron redox reaction, associated with the organic groups (unusual triazine ring, piperazine ring, and benzene ring, and common C(sic)N,-NH-groups).
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Solvothermally exfoliated fluorographene for high-performance lithium primary batteries
    Sun, Chuanbin
    Feng, Yiyu
    Li, Yu
    Qin, Chengqun
    Zhang, Qingqing
    Feng, Wei
    NANOSCALE, 2014, 6 (05) : 2634 - 2641
  • [42] Flower-like covalent organic frameworks as host materials for high-performance lithium-sulfur batteries
    Cai, Shaobo
    Ma, Runlin
    Ke, Wang
    Zhang, Hao
    Liu, Yiyang
    Jiao, Menggai
    Tian, Yun
    Fang, Yongzheng
    Wu, Manman
    Zhou, Zhen
    CHEMICAL ENGINEERING JOURNAL, 2024, 491
  • [43] A 2D covalent organic framework as a high-performance cathode material for lithium-ion batteries
    Wu, Manman
    Zhao, Yang
    Sun, Binqiao
    Sun, Zhenhe
    Li, Chenxi
    Han, Yu
    Xu, Lingqun
    Ge, Zhen
    Ren, Yuxin
    Zhang, Mingtao
    Zhang, Qiang
    Lu, Yan
    Wang, Wei
    Ma, Yanfeng
    Chen, Yongsheng
    NANO ENERGY, 2020, 70
  • [44] Few-Layered Boronic Ester Based Covalent Organic Frameworks/Carbon Nanotube Composites for High-Performance K-Organic Batteries
    Chen, Xiudong
    Zhang, Hang
    Ci, Chenggang
    Sun, Weiwei
    Wang, Yong
    ACS NANO, 2019, 13 (03) : 3600 - 3607
  • [45] Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries
    Shi, Ruijuan
    Liu, Luojia
    Lu, Yong
    Wang, Chenchen
    Li, Yixin
    Li, Lin
    Yan, Zhenhua
    Chen, Jun
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [46] β-Ketoenamine-Linked Covalent Organic Framework with Co Intercalation: Improved Lithium-Storage Properties and Mechanism for High-Performance Lithium-Organic Batteries
    Wang, Han
    Zou, Wentao
    Liu, Chao
    Sun, Yi
    Xu, Yi
    Sun, Weiwei
    Wang, Yong
    BATTERIES & SUPERCAPS, 2023, 6 (03)
  • [47] Facile Fabrication of Ultrathin Bimetal-Organic Nanosheets as High-Performance Anode of Lithium-Ion Batteries
    Han, Yang
    Hong, Xinyi
    Zheng, Hao
    Zhu, Renzhi
    Liu, Yefeng
    Gao, Hua-Min
    Zhang, Yang
    Wang, Xiaodong
    Li, Honglin
    Yin, Xiaojie
    CHEMNANOMAT, 2023, 9 (10)
  • [48] Cobalt Coordinated Cyano Covalent-Organic Framework for High-Performance Potassium-Organic Batteries
    Zhao, Lu
    Zheng, Lu
    Li, Xiaopeng
    Wang, Han
    Lv, Li-Ping
    Chen, Shuangqiang
    Sun, Weiwei
    Wang, Yong
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (41) : 48913 - 48922
  • [49] Covalent Triazine Frameworks Incorporating Charged Polypyrrole Channels for High-Performance Lithium-Sulfur Batteries
    Kim, Jiheon
    Elabd, Ahmed
    Chung, Sung-Yoon
    Coskun, Ali
    Choi, Jang Wook
    CHEMISTRY OF MATERIALS, 2020, 32 (10) : 4185 - 4193
  • [50] High-Lithium-Affinity Chemically Exfoliated 2D Covalent Organic Frameworks
    Chen, Xiudong
    Li, Yusen
    Wang, Liang
    Xu, Yi
    Nie, Anmin
    Li, Qianqion
    Wu, Fan
    Sun, Weiwei
    Zhang, Xiang
    Vajtai, Robert
    Ajayan, Pulickel M.
    Chen, Long
    Wang, Yong
    ADVANCED MATERIALS, 2019, 31 (29)