Exfoliated Triazine-Based Covalent Organic Nanosheets with Multielectron Redox for High-Performance Lithium Organic Batteries

被引:201
|
作者
Lei, Zhendong [1 ,2 ]
Chen, Xiudong [1 ,3 ]
Sun, Weiwei [1 ,4 ]
Zhang, Yong [2 ]
Wang, Yong [1 ,4 ]
机构
[1] Shanghai Univ, Dept Chem Engn, Sch Environm & Chem Engn, 99 Shangda Rd, Shanghai 200444, Peoples R China
[2] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, Singapore 117583, Singapore
[3] Qiannan Normal Coll Nationalities, Sch Chem & Chem Engn, Duyun 558000, Guizhou, Peoples R China
[4] Univ Wollongong, Inst Superconducting & Elect Mat, North Wollongong, NSW 2500, Australia
基金
中国国家自然科学基金;
关键词
covalent-organic nanosheets; exfoliation; lithium-storage mechanism; organic electrodes; FRAMEWORK DERIVATION; POLYMER NETWORKS; LONG-LIFE; ION; ANODE; CRYSTALLINE; CAPACITY; CATHODE; STORAGE; THERMOCHEMISTRY;
D O I
10.1002/aenm.201801010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of the next-generation lithium ion battery requires environmental-friendly electrode materials with long cycle life and high energy density. Organic compounds are a promising potential source of electrode materials for lithium ion batteries due to their advantages of chemical richness at the molecular level, cost benefit, and environmental friendliness, but they suffer from low capacity and dissatisfactory cycle life mainly due to hydrophobic dissolution in organic electrolytes and poor electronic conductivity. In this work, two types of triazine-based covalent organic nanosheets (CONs) are exfoliated and composited with carbon nanotubes. The thin-layered 2D structure for the exfoliated CONs can activate more functional groups for lithium storage and boost the utilization efficiency of redox sites compared to its bulk counterpart. Large reversible capacities of above 1000 mAh g(-1) can be achieved after 250 cycles, which is comparable to high-capacity inorganic electrodes. Moreover, the lithium-storage mechanism is determined to be an intriguing 11 and 16 electron redox reaction, associated with the organic groups (unusual triazine ring, piperazine ring, and benzene ring, and common C(sic)N,-NH-groups).
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Triazine-Porphyrin-Based Hyperconjugated Covalent Organic Framework for High-Performance Photocatalysis
    Liu, Xuxiao
    Qi, Ruilian
    Li, Shumu
    Liu, Wuran
    Yu, Yueyang
    Wang, Jihui
    Wu, Songmei
    Ding, Kejian
    Yu, Yu
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (51) : 23396 - 23404
  • [22] High performance carbon supercapacitor electrodes derived from a triazine-based covalent organic polymer with regular porosity
    Kim, Minjae
    Puthiaraj, Pillaiyar
    Qian, Yingjie
    Kim, Yeongseon
    Jang, Seokhoon
    Hwang, Sosan
    Na, Eunbeen
    Ahn, Wha-Seung
    Shim, Sang Eun
    ELECTROCHIMICA ACTA, 2018, 284 : 98 - 107
  • [23] Photocatalytic degradation of organic dyes using covalent triazine-based framework
    Zhuang, Yan
    Zhu, Qian
    Li, Guozhen
    Wang, Zhanliang
    Zhan, Peng
    Ren, Cong
    Si, Zhihao
    Li, Shufeng
    Cai, Di
    Qin, Peiyong
    MATERIALS RESEARCH BULLETIN, 2022, 146
  • [24] Functionalized triazine-based covalent organic frameworks containing quinoline via aza-Diels-Alder reaction for enhanced lithium-sulfur batteries performance
    Liang, Ying
    Xia, Meng
    Zhao, Yuxiang
    Wang, Dong
    Li, Yongpeng
    Sui, Zhuyin
    Xiao, Juanxiu
    Chen, Qi
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 608 : 652 - 661
  • [25] Interweaved Nanofiber Anode Coating Based on Covalent Organic Frameworks for High-Performance Lithium-Metal Batteries
    Zhuang, Huifen
    Guo, Can
    Feng, Wenhai
    Wang, Liwen
    Zheng, Zixi
    Li, Qi
    Zhang, Haifu
    Chen, Yifa
    Lan, Ya-Qian
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [26] Azo-linked covalent triazine-based framework as organic cathodes for ultrastable capacitor-type lithium-ion batteries
    Wu, Chuanguang
    Hu, Mingjun
    Yan, Xiaorong
    Shan, Guangcun
    Liu, Jinzhang
    Yang, Jun
    ENERGY STORAGE MATERIALS, 2021, 36 : 347 - 354
  • [27] Efficient Polysulfide Chemisorption in Covalent Organic Frameworks for High-Performance Lithium-Sulfur Batteries
    Ghazi, Zahid Ali
    Zhu, Lingyun
    Wang, Han
    Naeem, Abdul
    Khattak, Abdul Muqsit
    Liang, Bin
    Khan, Niaz Ali
    Wei, Zhixiang
    Li, Lianshan
    Tang, Zhiyong
    ADVANCED ENERGY MATERIALS, 2016, 6 (24)
  • [28] Covalent organic frameworks for high-performance rechargeable lithium metal batteries: Strategy, mechanism, and application
    Zhang, Conghui
    Li, Fangkun
    Gu, Tengteng
    Song, Xin
    Yuan, Jujun
    Ouyang, Liuzhang
    Zhu, Min
    Liu, Jun
    PROGRESS IN MATERIALS SCIENCE, 2025, 152
  • [29] Cationic Covalent Organic Framework as Separator Coating for High-Performance Lithium Selenium Disulfide Batteries
    Wang, Jun
    Ke, Jing-Ping
    Wu, Zhen-Yi
    Zhong, Xiao-Na
    Zheng, Song-Bai
    Li, Yong-Jun
    Zhao, Wen-Hua
    COATINGS, 2022, 12 (07)
  • [30] Ionic-rich triazine-based two-dimensional covalent organic framework materials for high-performance zinc-iodine battery
    Huang, Tiao
    Wang, Shenglin
    Hu, Hui
    Wang, Jianyi
    Zhang, Xiaosong
    Gao, Yanan
    JOURNAL OF POWER SOURCES, 2025, 633